
Solutions to Odd Exercises in Game Physics, 2nd Edition

David H. Eberly

April 13, 2010

Contents

1 Introducton 4

2 Basic Concepts from Physics 5

3 Rigid Body Motion 18

4 Deformable Bodies 53

5 Fluids and Gases 54

6 Physics Engines 63

7 Linear Algebra 66

8 Affine Algebra 72

9 Calculus 75

10 Quaternions 76

11 Differential Equations 77

12 Ordinary Difference Equations 78

13 Numerical Methods 79

1

14 Linear Complementarity and Mathematical Programming 80

2

A comment is in order about the examples and exercises in the book. Some of the reviewers of prepublication
drafts for the first edition were critical of my inclusion of problems that you normally see in a standard physics
textbook. Why cover them in a book entitled Game Physics? I have two reasons.

First, the misconception about the term “game physics” is that it refers entirely to hacks that are used in
games in order to convince the player that the environment is behaving in a physically realistic manner.
Moreover, many of the hacks are used to minimize the amount of CPU time spent on the physics. There is
nothing wrong with hacks or minimizing CPU usage, but the world of computational physics involves more
than just making it look right. The term “physical simulation” refers to building a virtual environment with
simulated objects and simulated forces and torques. The objects move according to the laws of physics as
determined by the equations of motion and subject to whatever physical constraints are present in the system.
Commercial game physics engines provide you with the ability to obtain physically correct behavior or to use
hacks to obtain visually correct, physical behavior. The former behavior requires you to understand physics
and all its supporting topics. An understanding of problems presented in a standard physics textbook
is sufficient to help you build a physical simulation, whether in a game application or any other type of
application. The latter behavior itself will require at least a minimal knowledge of physical principles. I am
presenting some standard problems because I believe they adequately convey the physical concepts that you
will need in a game application as well as in other types of applications.

Second, as you will find out in the solutions to the exercises, many physics textbooks stop short of showing
you how to actually compute object motion. The textbooks tend to develop mathematical equations that
are not the ones you need to use in a computer implementation. My exercises are designed to bridge the gap
between deriving standard physics textbook equations and implementing them on a computer. Sometimes
this gap is larger than you might expect. In my opinion, a classical problem that illustrates how large the
gap can be is Exercise 3.3 on Kepler’s Laws. If you try solving equation (3.1) directly with a numerical
differential equation solver, you will likely have severe problems with stability of the solution. Equation (3.2)
is the end of the road for a textbook presentation. The conclusion is that the Earth travels about the Sun
in an elliptical path. The equation tells you how the distance r from the Sun is related to the polar angle
θ, and the equation has various parameters of interest, but it gives you no clue about how the polar angle
varies with time or how to compute the parameters. My solution to that exercise shows you the additional
mathematical steps to reformulate the problem so that you can solve it in a numerically stable manner. The
CDROM has an implementation, the last step in the process of building a real physical simulation.

3

1 Introducton

No exercises.

4

2 Basic Concepts from Physics

Exercise 2.1. The position is

r(t) =

 (t, t3, 0), t < 0

(t, 0, t3), t ≥ 0

the velocity is

v(t) =

 (1, 3t2, 0), t < 0

(1, 0, 3t2), t ≥ 0

and the acceleration is

a(t) =

 (0, 6t, 0), t < 0

(0, 0, 6t), t ≥ 0

The limit as t approaches zero from values smaller than zero is

lim
t→0−

r(t) = lim
t→0−

(t, t3, 0) =

(
lim
t→0−

t, lim
t→0−

t3, lim
t→0−

0

)
= (0, 0, 0)

The last equality is true since the component functions are polynomials in t. Polynomials are continuous
functions, so limits are computed just by evaluating the polynomials at the value that t approaches. The
limit as t approaches zero from values larger than zero is

lim
t→0+

r(t) = lim
t→0+

(t, 0, t3) =

(
lim
t→0+

t, lim
t→0+

0, lim
t→0+

t3
)

= (0, 0, 0)

Again, the last equality is true since polynomial functions are continuous. A similar argument applies to
velocity and acceleration. The limiting vector for velocity is (1, 0, 0) and the limiting vector for acceleration
is (0, 0, 0).

Notice that |v(t)| = |(1, 3t2, 0)| =
√

1 + 9t4 for t < 0 and |v(t)| = |(1, 0, 3t2)| =
√

1 + 9t4 for t ≥ 0. The
speed function is

ṡ(t) =
√

1 + 9t4

for all t. Consider the portion of the curve for t < 0. This portion is a curve in the xy-plane with tangent
vector

T(t) =
(1, 3t2, 0)√

1 + 9t4

A unit-length normal according to equation (2.5) is

N(t) =
(−3t2, 1, 0)√

1 + 9t4

and has limit

lim
t→0−

N(t) = lim
t→0−

(−3t2, 1, 0)√
1 + 9t4

= (0, 1, 0)

The components of the normal vector are all continuous functions of t, so the limit is computed by simply
evaluating the components.

5

Now consider the portion of the curve for t ≥ 0. This portion is a curve in the xz-plane with tangent vector

T(t) =
(1, 0, 3t2)√

1 + 9t4

A unit-length normal according to equation (2.5) is

N(t) =
(−3t2, 0, 1)√

1 + 9t4

and has limit

lim
t→0+

N(t) = lim
t→0+

(−3t2, 0, 1)√
1 + 9t4

= (0, 0, 1)

The one-sided limits of N(t) at t = 0 are different. Even a sign change on one of the normals cannot force
the one-sided limits to be equal, so it is not possible to define a continuous function for the curve normal
vector at t = 0.

6

Exercise 2.3. The spherical helix is

(x, y, z) =
(cos t, sin t, t)√

1 + t2

Notice that ρ = |(x, y, z)| = 1 for all t, so this curve does in fact lie on a sphere of radius 1. Using the
equations for spherical coordinates,

cos t√
1 + t2

= x = cos θ sinφ,
sin t√
1 + t2

= y = sin θ sinφ,
t√

1 + t2
= z = cosφ

The last equation implies sinφ = 1/
√

1 + t2. Replacing this in the first two equations and cancelling common
terms leads to cos θ = cos t and sin θ = sin t, so we may choose θ(t) = t. In summary, we have

ρ(t) = 1, θ(t) = t, φ(t) = cos−1
(

t√
1 + t2

)
where the branch of the inverse cosine has values in [0, π]. The relevant derivatives are ρ̇ = 0, ρ̈ = 0, θ̇ = 1,
and θ̈ = 0. The derivatives of φ use the identities

d

du
cos−1(u) =

−1√
1− u2

,
d

dt

t√
1 + t2

=
1

(1 + t2)3/2

and the chain rule:

φ̇ =
d

dt
cos−1

(
t√

1 + t2

)
=

−1√
1− t2

1+t2

1

(1 + t2)3/2
=
−1

1 + t2

and

φ̈ =
2t

(1 + t2)2

Using equations (2.30), (2.31), and (2.32) for spherical coordinates, the position is

r = R

the velocity is

v = (sinφ)P− (φ̇)Q =

(
1√

1 + t2

)
P−

(
1

1 + t2

)
Q

and the acceleration is

a = (2φ̇ cosφ)P + (sinφ cosφ− φ̈)Q− (φ̇2 + sin2 φ)R = − 2t

(1 + t2)3/2
P− t

1 + t2
Q− 2 + t2

(1 + t2)2
R

The (x, y) components of the curve satisfy r2 = x2 + y2 = 1/(1 + t2). As t becomes infinite, r goes to zero.
However, x has a cosine term and y has a sine term, so the path in the xy-plane is a spiral into the origin.
The z component has a limit,

lim
t→∞

z(t) = lim
t→∞

t√
1 + t2

=

√
lim
t→∞

t2

1 + t2
=

√
lim
t→∞

(
1− 1

1 + t2

)
=
√

1 = 1

On the sphere itself, the spherical helix spirals about the north pole (0, 0, 1) and reaches it in the limit as t
becomes infinite.

7

Exercise 2.5. The relationship between the angular velocity w(t) and the rotation axis D is

Skew(w) = ṘRT

where
R = I + σS + (1− γ)S2, RT = I − σS + (1− γ)S2

with S = Skew(D), σ = sin(θ), and γ = cos(θ). Observe that Ṡ = Skew(Ḋ). The derivative of the rotation
matrix is

Ṙ = σṠ + θ̇γS + (1− γ)(SṠ + ṠS) + θ̇σS2

Matrix multiplication is not commutative in general, so beware not to use the power rule for derivatives.
That is, it is not generally the case that d(S2)/dt = 2SṠ.

An invertible matrix M is uniquely determine by how it acts on three linearly independent vectors. Moreover,
it is convenient to use three unit-length and mutually perpendicular vectors. Specifically, let U1, U2, and
U3 be unit length and mutually perpendicular with U3 = U1 ×U2. Let Ai = MUi for 1 ≤ i ≤ 3. Write
these as a single matrix equation,

MU = M [U1 U2 U3] = [MU1 MU2 MU3] = [A1 A2 A3] = A

where U and A are matrices whose columns are those shown. By our assumptions on the Ui, U is a rotation
matrix. Its inverse is just its transpose, so

M = AUT

For our problem at hand, we want to compute ṘRT. The unit-length and mutually perpendicular vectors
we will use are

U1 = D, U2 = Ḋ, U3 = D× Ḋ

In the constructions we use the following identities

U1 = U2 ×U3, U2 = U3 ×U1, U3 = U1 ×U2,

SU1 = 0, SU2 = U3. SU3 = −U2,

ṠU1 = −U3, ṠU2 = 0, ṠU3 = U1

First, let us apply just the RT portion to the vectors.

RTU1 = U1 − σSU1 + (1− γ)S2U1 = U1

RTU2 = U2 − σSU2 + (1− γ)S2U2 = U2 − σU3 − (1− γ)U2 = γU2 − σU3

RTU3 = U3 − σSU3 + (1− γ)S2U3 = U3 + σU2 − (1− γ)U3 = σU2 + γU3

Second, apply Ṙ to the original vectors.

ṘU1 = (σṠ + θ̇γS + (1− γ)(SṠ + ṠS) + θ̇σS2)U1 = (1− γ)U2 − σU3

ṘU2 = (σṠ + θ̇γS + (1− γ)(SṠ + ṠS) + θ̇σS2)U2 = (1− γ)U1 − θ̇σU2 + θ̇γU3

ṘU3 = (σṠ + θ̇γS + (1− γ)(SṠ + ṠS) + θ̇σS2)U3 = σU1 − θ̇γU2 − θ̇σU3

8

Third, compose the two operations,

ṘRTU1 = ṘU1 = (1− γ)U2 − σU3

ṘRTU2 = Ṙ(γU2 − σU3) = −(1− γ)U1 + θ̇U3

ṘRTU3 = Ṙ(σU2 + γU3) = σU1 − θ̇U2

Setting U = [U1 U2 U3] and factoring leads to

ṘRTU = [(1− γ)U2 − σU3 | − (1− γ)U1 + θ̇U3 | σU1 − θ̇U2]

Inverting U to the right-hand side,

ṘRT = [(1− γ)U2 − σU3 | − (1− γ)U1 + θ̇U3 | σU1 − θ̇U2]

UT

1

UT
2

UT
3

= θ̇

(
U3U

T
2 −U2U

T
3

)
+ σ

(
U1U

T
3 −U3U

T
1

)
+ (1− γ)

(
U2U

T
1 −U1U

T
2

)
The last step involves verifying a relationship between the matrices in the last equation and the skew operator.
Let A = (a1, a2, a3) and B = (b1, b2, b3). Then

BAT −ABT =

b1

b2

b3

[a1 a2 a3

]
−

a1

a2

a3

[b1 b2 b3

]

=

b1a1 b1a2 b1a3

b2a1 b2a2 b2a3

b3a1 b3a2 b3a3

−

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

=

0 −(a1b2 − a2b1) +(a3b1 − a1b3)

+(a1b2 − a2b1) 0 −(a2b3 − a3b2)

−(a3b1 − a1b3) +(a2b3 − a3b2) 0

= Skew(A×B)

Applying this identity to our equation for ṘRT, we have

Skew(w) = ṘRT

= θ̇ Skew(U2 ×U3) + σ Skew(U3 ×U1) + (1− γ) Skew(U1 ×U2)

= θ̇ Skew(U1) + σ Skew(U2) + (1− γ) Skew(U3)

= θ̇ SkewD + (sin θ) Skew(Ḋ) + (1− cos θ) Skew(D× Ḋ)

9

Using the fact that Skew(A) = Skew(B) implies A = B, we may remove the skew operator to obtain the
desired result,

w = θ̇D + (sin θ)Ḋ + (1− cos θ)D× Ḋ

10

Exercise 2.7. The position is

r =
((1− t2) cos(πt), (1− t2) sin(πt), t2)√

(1− t2)2 + t4

We need to define an orientation matrix for the rigid sphere. We know that |r| = 1 for all t, so the position
vector itself may be used as one of the columns. Moreover, the condition r · r = 1 for all t implies r · ṙ = 0
for all t, in which case ṙ is always perpendicular to r. Another column is u = ṙ/|ṙ|. The final column is the
cross product of the other two columns. The orientation matrix is

R(t) =
[

r u r× u
]

The angular velocity vector is define by equation (2.38), but is solved explicitly as

Skew(w) = ṘRT

We need only compute the right-hand side using the orientation matrix we have chosen.

The quotient rule may be applied to u to obtain its derivative,

u̇ =
|ṙ|2r̈− (r̈ · ṙ)ṙ

|ṙ|3
=

r̈− (r̈ · u)u

|ṙ|

The product rule may be applied to r× u to obtain its derivative

d(r× u)

dt
= r× u̇ + ṙ× u = r× u̇

The last equality is true since the velocity and the normalized velocity vectors are parallel, in which case the
cross product of the two is the zero vector. The derivative of the orientation matrix is

Ṙ =
[

ṙ u̇ r× u̇
]

The angular velocity is

Skew(w) = ṘRT =
[

ṙ u̇ r× u̇
]

r

u

r× u

 = ṙrT + u̇uT + (r× u̇)(r× u)T

Just as we defined the skew-symmetric matrix S = Skew(w), we may define the inverse operations w =
Unskew(S). Therefore,

w = Unskew
(
ṙrT + u̇uT + (r× u̇)(r× u)T

)
Although you could go through the horrendous algebraic details of computing the vectors ṙ, u, and u̇ for
the specific position r of this problem, all that is needed for a computer implementation are functions for r,
V ectorv = ṙ, and a = r̈. These functions are somewhat complicated in the current example, so you could
always rely on a symbolic mathematics program to generate the C code for you (Mathematica can do this).

11

Vector3d RFunction (double t) { /* position calculations */ }

Vector3d VFunction (double t) { /* velocity calculations */ }

Vector3d AFunction (double t) { /* acceleration calculations */ }

void ComputeTerms (double t, Vector3d& R, Vector3d& V, Vector3d& U, Vector3d& UDot)

{

R = RFunction(t);

V = VFunction(t);

Vector3d A = AFunction(t);

double length = V.Length();

U = V/length;

UDot = (A - R.Dot(U)*U)/length;

}

Vector3d WFunction (double t)

{

Vector3d R, V, U, UDot;

ComputeTerms(t,R,V,A,U,UDot);

Vector3d RxU = R.Cross(U);

Vector3d RxUDot = R.Cross(UDot);

Vector3d W;

W.X() = -(V.Y()*R.Z() + UDot.Y()*U.Z() + RxUDot.Y()*RxU.Z());

W.Y() = +(V.X()*R.Z() + UDot.X()*U.Z() + RxUDot.X()*RxU.Z());

W.Z() = -(V.X()*R.Y() + UDot.X()*U.Y() + RxUDot.X()*RxU.Y());

return W;

}

12

Exercise 2.9. Suppose that the line of the fulcrum has unit-length direction vector D and unit-length normal
vector N. The line contains the center of mass C = (x̄, ȳ). In parameteric form, the line is P(s) = C + sD
for any real number s. In normal form, the line is N · (P−C) = 0.

The center of mass, direction, and normal form a two-dimensional coordinate system. A particle located at
Pi = (xi, yi) may be written as

Pi = C + siD + tiN

where
si = D · (Pi −C)

and
ti = N · (Pi −C)

Observe that ti is the distance from Pi to the fulcrum line. The first moment of the system about the
fulcrum line is

M =
∑p
i=1miti

=
∑p
i=1miN · (Pi −C)

=
∑p
i=1miN · (xi − x̄, yi − ȳ)

= N ·
∑p
i=1mi(xi − x̄, yi − ȳ)

= N · (0, 0)

= 0

The fact that
∑p
i=1mi(xi − x̄, yi − ȳ) = (0, 0) was already discussed in the book. Since the first moment is

zero with respect to the fulcrum line, the plate must balance on the fulcrum. This is true regardless of the
line orientation as specified by N.

13

Exercise 2.11

It should be intuitive that the result is true. The rotation is a rigid motion. If you imagine {a,b,a× b} as
a nonorthogonal coordinate frame, the rotation preserves all the relationships among these vectors.

Here is one way to prove the identity. Another approach is shown in Exercise 5.8.

Let w be a unit-length vector for the axis of rotation. Let the angle of rotation be θ. Let u and v be vectors
for which the set {u,v,w} is a right-handed orthonormal set. That is, the vectors are unit length, mutually
perpendicular; also, u = v×w, v = w× u, and w = u× v. The rotation acts on the vectors according to
the following:

Ru = cu + sv, Rv = −su + cv, Rw = w

where c = cos θ and s = sin θ.

Represent the specified vectors in the coordinate system of this orthonormal set.

a = α0u + α1v + α2w

b = β0u + β1v + β2w

a× b = γ0u + γ1v + γ2w

where
(γ0, γ1, γ2) = (α1β2 − α2β1, α2β0 − α0β2, α0β1 − α1β0)

Then

Ra = α0Ru + α1Rv + α2Rw = (cα0 − sα1)u + (sα0 + cα1)v + α2w

Rb = β0Ru + β1Rv + β2Rw = (cβ0 − sβ1)u + (sβ0 + cβ1)v + β2w

R(a× b) = γ0Ru + γ1Rv + γ2Rw = (cγ0 − sγ1)u + (sγ0 + cγ1)v + γ2w

Computing in the coordinate system of {u,v,w}, some algebraic manipulations will show that

(Ra)× (Rb) = (cα0 − sα1, sα0 + cα1, α2)× (cβ0 − sβ1, sβ0 + cβ1, β2)

= (c(α1β2 − α2β1)− s(α2β0 − α0β2), c(α2β0 − α0β2) + s(α1β2 − α2β1), α0β1 − α1β0)

It is also straightforward to show that

R(a× b) = (cγ0 − sγ1, sγ0 + cγ1, γ2)

= (c(α1β2 − α2β1)− s(α2β0 − α0β2), c(α2β0 − α0β2) + s(α1β2 − α2β1), α0β1 − α1β0)

The two expressions are equal.

14

Exercise 2.13. The region in Example 2.3 is parameterized by x and y where x2 ≤ y ≤ 1, −1 ≤ x ≤ 1, and
z = 0. The mass density is assumed to be 1. The first inertia tensor component is

Ixx =
∫ 1

−1
∫ 1

x2 y
2 + z2 dy dx

=
∫ 1

−1
∫ 1

x2 y
2 dy dx

=
∫ 1

−1
y3

3

∣∣∣1
x2
dx

=
∫ 1

−1
1−x6

3 dx

= x−x7/7
3

∣∣∣1
−1

= 4
7

The constructions are similar for the other components.

Iyy =
∫ 1

−1
∫ 1

x2 x
2 + z2 dy dx = 4

15

Izz =
∫ 1

−1
∫ 1

x2 x
2 + y2 dy dx = 88

105

Ixy =
∫ 1

−1
∫ 1

x2 xy dy dx = 0

Ixz =
∫ 1

−1
∫ 1

x2 xz dy dx = 0

Iyz =
∫ 1

−1
∫ 1

x2 yz dy dx = 0

15

Exercise 2.15. The position of the points (xi, yi, zi) relative to the center of mass (x̄, ȳ, z̄) is

(x̂i, ŷi, ẑi) = (xi, yi, zi)− (x̄, ȳ, z̄) = (xi − x̄, yi − ȳ, zi − z̄)

Consider the Ixx inertia tensor component,

Ixx =
∑p
i=1mi(y

2
i + z2i)

=
∑p
i=1mi[(ŷi + ȳ)2 + (ẑi + z̄)2]

=
∑p
i=1mi(ŷ

2
i + ẑ2i) +

∑p
i=1mi(2ŷiȳ + ȳ2 + 2ẑiz̄ + z̄2)

=
∑p
i=1mi(ŷ

2
i + ẑ2i) + 2ȳ

∑p
i=1miŷi + 2z̄

∑p
i=1miẑi + (ȳ2 + z̄2)

∑p
i=1mi

= Īxx + 0 + 0 +m(ȳ2 + z̄2)

The middle two terms are zero because they include the first moments about the center of mass. For example,
0 =

∑p
i=1miŷi =

∑p
i=1mi(yi − ȳ).

Similarly,

Ixy =
∑p
i=1mixiyi

=
∑p
i=1mi(x̂i + x̄)(ŷi + ȳ)

=
∑p
i=1 x̂iŷi +

∑p
i=1mi(x̄ŷi + ȳx̂i + x̄ȳ)

=
∑p
i=1 x̂iŷi + x̄

∑p
i=1miŷi + ȳ

∑p
i=1mix̂i + x̄ȳ

∑p
i=1mi

= Īxy + 0 + 0 +mx̄ȳ

Once again, the middle two terms are zero because they include the first moments about the center of mass.

The other inertia tensor components are handled in the same manner.

16

Exercise 2.17. The force is F = (1, 1, 1). The velocity of the particle is

v(t) = (−rω sin(ωt), rω cos(ωt), 0)

The work done on the interval t ∈ [0, T] is

W (T) =
∫ T
0

(1, 1, 1) · (−rω sin(ωt), rω cos(ωt), 0) dt

=
∫ T
0
rω(cos(ωt)− sin(ωt)) dt

= r(cos(ωt) + sin(ωt))|T0
= r(cos(ωT) + sin(ωT)− 1)

In particular, at time T = 2πω, W (2πω) = 0. The force field is conservative, so the net work done is zero
units for the particle to travel around the circle once and end where it started.

The net work is a maximum when W ′(T) = 0. The derivative is

W ′(T) = rω(− sin(ωT) + cos(ωt))

This is zero when tan(ωT) = 1, in which case ωT is π/4 + kπ for any integer k. Half these values lead to a
minimum, the other half to a maximum. In particular, T = π/(4ω) leads to the maximum

W (π/(4ω)) = r(
√

2− 1)

Now consider a force F = (t, t, 1). The work done on the interval t ∈ [0, T] is

W (T) =
∫ T
0

(t, t, 1) · (−rω sin(ωt), rω cos(ωt), 0) dt

=
∫ T
0
rωt(cos(ωt)− sin(ωt)) dt

= r
ω (−1 + cos(ωT)− sin(ωT)) + Tω(cos(ωT) + sin(ωT)))

The integration may be performed using the method of integration by parts, looked up in a table of integrals,
or computed symbolically (Mathematica for example).

The derivative is
W ′(T) = rωT (cos(ωT)− sin(ωT))

and is zero when ωT = π/4 + kπ for any integer k. At such values when k = 2n is even, you have local
maxima,

W (π/4 + 2nπ) = rω(π/4 + 2nπ)
√

2

But as n increases, so does the net work W (π/4+2nπ). This makes sense since the magnitude of F is
√

2t2 + 1
which always increases over time. The force keeps getting stronger, so the net work keeps increasing.

17

3 Rigid Body Motion

Exercise 3.1. Multiply equation (3.2) by the denominator on the right-hand side,

eρ = r(1 + e cos θ) = r + ex

where we have used x = r cos θ. Square both sides,

e2ρ2 = r2 + 2exr + e2x2

and solve for
2exr = e2(ρ2 − x2)− r2

In polar coordinates we know that r =
√
x2 + y2. We need to eliminate the square root on the left, so square

both sides once again,

4e2x2r2 = [e2(ρ2 − x2)− r2]2 = [e2(ρ2 − x2)]2 + r4 − 2e2(ρ2 − x2)r2

Subtracting the left-hand side from both sides of the equation and perform the following steps,

0 = [e2(ρ2 − x2)]2 + r4 − 2e2(ρ2 + x2)r2

= [e2(ρ2 + x2)− 2e2x2]2 + r4 − 2e2(ρ2 + x2)r2

= [e2(ρ2 + x2)]2 − 4e4x2(ρ2 + x2) + 4e4x4 + r4 − 2e2(ρ2 + x2)r2

= [e2(ρ2 + x2)]2 − 4e4ρ2x2 + r4 − 2e2(ρ2 + x2)r2

= [e2(ρ2 + x2)− r2]2 − 4e4ρ2x2

4e4ρ2x2 = [e2(ρ2 + x2)− r2]2

Take the square root of both sides,
±2e2ρx = e2(ρ2 + x2)− r2

where the plus-or-minus sign indicates we have two possible solutions. Moving all variable terms to the
left-hand side,

(1− e2)x2 ± 2e2ρx+ y2 = r2 − e2x2 ± 2e2ρx = e2ρ2

Now divide by 1− e2 to obtain

x2 ± 2
e2ρ

1− e2
x+

1

1− e2
y2 =

e2ρ2

1− e2

and complete the square(
x± e2ρ

1− e2

)2

+
1

1− e2
y2 =

e2ρ2

1− e2
+

e4ρ2

(1− e2)2
=

e2ρ2

(1− e2)2

Recall that the book defines a = eρ/(1−e2) and b = a
√

1− e2, in which case a2/b2 = 1/(1−e2). Also define
c = ae = e2ρ/(1− e2). The last displayed equation becomes

(x± c)2 +
a2

b2
y2 = a2

18

or finally
(x± c)2

a2
+
y2

b2
= 1

This is the standard formula for an axis-aligned ellipse whose center is (±c, 0), whose major axis length is
a > 0, and whose minor axis length is b > 0.

In standard analytical geometry text books, the number c is introduced as the distance from the center of
the ellipse to a focal point. In our example, this implies the origin (0, 0) is a focal point of the ellipse. The
other focal point is located at (±2c, 0).

19

Exercise 3.3. Kepler’s Laws led us to the conclusion that the Earth and the Sun lie in a plane that is
spanned by the position r of the Earth relative to the Sun and the velocity v of the Earth relative to the
Sun. A normal vector to the plane of motion was shown to be the constant vector c0 = r × v. In polar
coordinates, r = rR where r is the distance from the Sun to the Earth and R is a unit-length vector pointing
from the Sun to the Earth. The distance r and angle θ are functions of time, say r(t) and θ(t). The initial
data is r0 = r(0), ṙ0 = ṙ(0), θ0 = θ(0), and θ̇0 = θ̇(0). The orbit of the Earth around the Sun in polar
coordinates is (r(t), θ(t)) for t ≥ 0 and is uniquely determined for the specified initial data. The goal of the
exercise is to show how to compute the orbit.

Item 1. Equation (3.2) is the representation of acceleration in polar coordinates (r, θ),

a = (r̈ − rθ̇2)R + (rθ̈ + 2ṙθ̇)P

where R = (cos θ, sin θ, 0) and P = (− sin θ, cos θ, 0). Notice that I have added the third component of 0 to
indicate that as a system in 3D (cylindrical coordinates), the plane of motion of the Earth is z = 0. Equation
(3.1) tells us that

a = v̇ = −GM
r3

r = −GM
r2

R =

(
−GM

r2

)
R + (0)P

Equating the coefficients of R and P in the last two displayed equations,

r̈ − rθ̇2 = −GM
r2

, rθ̈ + 2ṙθ̇ = 0

Item 2. Multiply rθ̈ + 2ṙθ̇ = 0 by r to obtain

0 = r2θ̈ + 2rṙθ̇ =
d

dt

(
r2θ̇
)

Since the time derivative of r2θ̇ is zero, the quantity is constant with respect to time. The mass M is also
constant, so the angular momentum α = Mr2θ̇ is a constant. In particular, the constant is determined by
the initial time, α = Mr20 θ̇0. Thus,

θ̇(t) =
α

Mr2
=
r20 θ̇0
r2

(1)

If θ̇0 > 0, then θ̇(t) > 0 for all time. For notations sake, let the angle be written as a function of time,
θ = f(t). The fact that the derivative of θ with respect to time is always positive, f(t) is a strictly increasing
function of time. From calculus we know that such functions are invertible. The inverse is t = f−1(θ). The
distance is a function of time, r(t). We can substitute in the expression for time to obtain

r(t) = r
(
f−1(θ)

)
in which case r is also a function of θ.

Item 3. Using the first differential equation in Item 1 and replacing equation (1) in it,

− GM

r2
= r̈ − rθ̇2 = r̈ − r

(α

Mr2

)2
= r̈ − α2

M2r3
(2)

The right-hand side of the equation has a singularity at r = 0 which can cause problems when computing
with a numerical differential equation solver.

20

Item 4. The potential energy as a function of polar angle θ is V (θ) = −GM/r where r is a function of θ. The
derivative of V with respect to θ is denoted V ′(θ). The initial conditions for potential energy are denoted
V0 = V (θ0) and V ′0 = V ′(θ0).

Item 4(a). Apply a time derivative to r = −GM/V ,

ṙ = d
dt

(
−GMV

)
= GM

V 2
dV
dt by the power rule

= GM
V 2

dV
dθ

dθ
dt by the chain rule

= GM
V 2 V

′θ̇

= GM
(−GM/r)2V

′ (α
Mr2

)
= αV ′

GM2

Item 4(b). Apply a time derivative to ṙ from Item 4(a),

r̈ = dṙ
dt

= α
GM2

dV ′

dt

= α
GM2

dV ′

dθ
dθ
dt by the chain rule

= α
GM2V

′′ (α
Mr2

)
= α2V ′′

GM3r2

= α2V ′′

GM3(−GM/V)2

= α2V ′′V 2

G3M5

Item 4(c). Substitute r̈ from Item 4(b) into equation (2),

−GMr2 = r̈ − α2

M2r3

− GM
(−GM/V)2 = α2V ′′V 2

G3M5 − α2

M2(−GM/V)3

− V 2

GM = α2V ′′V 2

G3M5 + α2V 3

G3M5

−G
2M4

α2 = V ′′ + V

The left-hand side is a constant. This is a nonhomogeneous, second-order, linear differential equation with
constant coefficients. The characteristic polynomial is λ2 + 1 = 0 and has roots λ = ±i. This means the two
linearly independent solutions to the homogeneous equation are sin(θ) and cos(θ). The general homogeneous
solution is a linear combination of these,

Vh = c0 sin θ + c1 cos θ

where constants c0 and c1 are determined by initial data. Observe that V ′′h + Vh = 0. A particular solution
to the nonhomogeneous equation is

Vp = −G
2M4

α2

21

Clearly, V ′′p + Vp = 0−G2M4/α2, so Vp is a solution. The general solution to the differential equation is

V (θ) = Vh + Vp = c0 sin θ + c1 cos θ − G2M4

α2
(3)

Item 4(d). The derivative of V in equation (3) is

V ′(θ) = c0 cos θ − c1 sin θ

Evaluating V (θ) and V ′(θ) at the initial angle θ0, we have two linear equations in the two unknown coeffi-
cients,

c0 sin θ0 + c1 cos θ0 = V0 +
G2M4

α2
, c0 cos θ0 − c1 sin θ = V ′0

The solution is

c0 =

(
V0 +

G2M4

α2

)
sin θ0 + V ′0 cos θ0, c1 =

(
V0 +

G2M4

α2

)
cos θ0 − V ′0 sin θ0

Finally, let us replace V0 and V ′0 by quantities involving the initial polar data r0, ṙ0, θ0, and θ̇0. First,

V0 = V (θ0) =
GM

r0

Second, in Item 4(a) we showed that ṙ = αV ′/(GM2). At the initial time,

V ′0 =
GM2ṙ0
α

Third, we had shown that α = Mr20 θ̇0. Combining these we have,

c0 =
(
V0 + G2M4

α2

)
sin θ0 + V ′0 cos θ0

=
(
GM
r0

+ G2M4

(Mr20 θ̇0)
2

)
sin θ0 +

(
GM2ṙ0
Mr20 θ̇0

)
cos θ0

=
(
GM
r0

+ G2M2

r40 θ̇
2
0

)
sin θ0 +

(
GMṙ0
r20 θ̇0

)
cos θ0

(4)

Similarly,

c1 =
(
GM
r0

+ G2M2

r40 θ̇
2
0

)
cos θ0 −

(
GMṙ0
r20 θ̇0

)
sin θ0 (5)

Item 5. Conservation of momentum is represented by α = Mr2θ̇ where α is a constant. The definition of
potential energy is V = −GM/r. Substitute this into the potential equation and solve for

θ̇ =
α

Mr2
=

α

M(−GM/V)2
=

αV 2

G2M3
(6)

Item 6. In equation (6) substitute V from equation (3),

θ̇ =
α

G2M3

(
c0 sin θ + c1 cos θ − G2M4

α2

)2

, θ(0) = θ0 (7)

22

The constants c0 and c1 are evaluated from equations (4) and (5).

Equation (7) is numerically solved in the application KeplerPolarForm on the CDROM. The application
draws the elliptical path of motion of the Earth for user-specified inputs G, M , r0, ṙ0, θ0, and θ̇0. Once
θ(t) is known for each t, equation (3.2) is used to compute r(θ) = eρ/(1 + e cos θ) where e = γ1/(GM) and
ρ = γ20/γ1.

We had shown that c0 = r × v is a constant for all time. We also showed that v × c0 = GMR + c1 for a
constant vector c1. The lengths of the constant vectors are γ0 = |c0| and γ1 = |c1|. The constant vectors
themselves can be computed at the initial time. By definition,

r = rR

From equation (2.12) the velocity is
v = ṙR + rθ̇P

The cross product is
r× v = (rR)× (ṙR + rθ̇P) = r2θ̇k

where k = (0, 0, 1). Consequently, at time zero,

c0 = r20 θ̇0k, γ0 = r20

∣∣∣θ̇0∣∣∣
Furthermore,

v× c0 = (ṙR + rθ̇P)× (r2θ̇)k)

= (r2ṙθ̇)R× k + (r3θ̇2)P× k

= −(r2ṙθ̇)P + (r3θ̇2)R

Consequently, at time zero,

c1 = (r30 θ̇
2
0)R0 − (r20 ṙ0θ̇0)P0 −GMR0 = (r30 θ̇

2
0 −GM)R0 − (r20 ṙ0θ̇0)P0

where R0 = (cos θ0, sin θ0, 0) and P0 = (− sin θ0, cos θ0, 0). The length is

γ1 =

√
(r30 θ̇

2
0 −GM)2 + (r20 ṙ0θ̇0)2

The application is also designed to verify the equation we established for the period of the orbit,

T =
2πa3/2√
GM

where a is the major axis length of the ellipse. Recall from the book that 2a = 2ρe/(1 − e2) where The
minor axis length is 2b = 2a

√
1− e2. All of a, b, and T are computed in the application.

23

Exercise 3.5. Using the construction on page 97, the approximation for the integral is

T
.
=

∫ π/6−ε

0

dψ√
cos(ψ)− cos(π/6)

+

√
2

cos(π/6)

(
π

2
− sin−1

(
1− ε cos(π/6)

sin(π/6)

))
for some small ε > 0. My implementation for approximating this is

#include "Wm5Integrate1.h"

#include "Wm5Math.h"

using namespace Wm5;

int main ()

{

// integral term on [0,pi/6-e] (uses Simpson’s rule for integration)

double epsilon = 1e-08;

double initialAngle = Mathd::PI/6.0;

double amin = 0.0, amax = initialAngle - epsilon;

double fmin = 1.0/Mathd::Sqrt(Mathd::Cos(amin) - initialAngle);

double fmax = 1.0/Mathd::Sqrt(Mathd::Cos(amax) - initialAngle);

double integral = fmin + fmax;

const int imax = 1024;

double h = (amax - amin)/(double)imax;

for (int i = 1; i < imax; i++)

{

double angle = amin + i*h;

double arg = Mathd::Cos(angle) - initialAngle;

// assert: arg > 0.0

double f = Mathd::InvSqrt(arg);

if (i & 1)

{

integral += 4.0*f;

}

else

{

integral += 2.0*f;

}

}

integral *= h/3.0;

// remainder term on [pi/6-e,pi/6]

double cs = Mathd::Cos(initialAngle);

double sn = Mathd::Sin(initialAngle);

double remainder = Mathd::Sqrt(2.0/cs)*(Mathd::HALF_PI -

Mathd::ASin(1.0 - epsilon*cs/sn));

double pendulumTime = integral + remainder;

return 0;

}

The value of pendulumTime is 0.800275. The value of remainder is 0.000282.

24

Exercise 3.7. The position vector is x = (q, q2, q3) where. As a function of time, the initial position is
(1, 1, 1). The initial velocity is (0, 0, 0) since the object is “released”. First, let us set up the equations of
motion. The q-derivative is dx/dq = (1, 2q, 3q2). The t-derivative is ẋ = (dx/dq)q̇. The kinetic energy is

T (q, q̇) =
m

2
|ẋ| = m

2
(1 + 4q2 + 9q4)q̇2

The various derivatives and the generalized force are

∂T
∂q = 2m(2q + 9q3)q̇2

∂T
∂q̇ = m(1 + 4q2 + 9q4)q̇

d
dt

(
∂T
∂q̇

)
= m(1 + 4q2 + 9q4)q̈ + 4m(2q + 9q3)q̇2

Fq = −mg(0, 0, 1) · (1, 2q, 3q2) = −3mgq2

The Lagrangian equation of motion is

d
dt

(
∂T
∂q̇

)
− ∂T

∂q = Fq

m(1 + 4q2 + 9q4)q̈ + 4m(2q + 9q3)q̇2 − 2m(2q + 9q3)q̇2 = −3mgq2

or

q̈ = −3gq2 + 2q(2 + 9q2)q̇2

1 + 4q2 + 9q4
, q(0) = 1, q̇(0) = 0

By assumption, g > 0. Notice that the right-hand side is always negative. This means that q̇ is a decreasing
function of time. Since the initial velocity is zero, it is the case that q̇(0) = 0. Since q̇ is decreasing, it must
be that q̇(t) < 0 for all times t > 0. This in turn implies that q(t) is a decreasing function. This agrees with
your intuition. Only gravity acts on the particle, so it must slide down the spiral curve, in which case q is
decreasing.

The problem now is to determine the time T > 0 for which q(T) = 0. (This does require selecting a
gravitational constant g.) At this time the position is x(T) = 0. It is not possible to obtain a closed form
formula for q(t) from the second-order differential equation that defines it. Your only hope of estimating the
time T is by a numerical method. An implementation of this is in the directory BeadSlide on the CDROM.
I choose gravity g = 1, mass m = 0.1, a time step h = 0.001, and initial conditions q(0) = 1 and q̇(0) = 0. I
used a Runge-Kutta 4th-order solver and iterated 2500 times. The positions are constructed at each time.
Two entries from the output file are

time q dot(q) position (x,y,z)

2.240 +0.00017622 -1.41421347 +0.0002 +0.0000 +0.0000

2.241 -0.00123799 -1.41420923 -0.0012 +0.0000 -0.0000

The value of q reaches zero somewhere between 2.24 and 2.241. Notice that the position is approximately
the zero vector.

25

Exercise 3.9. We already have the spring force

F = −c(x1, x2, 0)

for a constant c > 0. Let the viscous friction be modeled by

G = −a(ẋ1, ẋ2, 0)

for a constant a > 0. The total external force is F + G. The generalized forces are

Fx1
= (F + G) · ∂X

∂x1
= (F + G) · (1, 0, 0) = −cx1 − aẋ1

and

Fx2 = (F + G) · ∂X

∂x2
= (F + G) · (0, 1, 0) = −cx2 − aẋ2

The Lagrangian equations of motion are

mẍ1 + aẋ1 + cx1 = 0, x1(0) = p1, ẋ1(0) = v1

mẍ2 + aẋ2 + cx2 = 0, x2(0) = p2, ẋ2(0) = v2

The equations are the same second-order linear differential equation with constant coefficients, so we will
compute a solution x(t) that represents either x1(t) or x2(t) depending on the initial conditions. The
characteristic polynomial is mr2 + ar+ = 0, so the roots are

r =
−a±

√
a2 − 4mc

2m

Both roots are negative real-valued numbers (when a2 − 4mc ≥ 0) or are complex-valued with negative real
parts (when a2 − 4mc < 0).

Case 1. Let the roots be real-valued and named r1 = (−a+
√
a2 − 4mc)/(2m) and r2 = (−a−

√
a2 − 4mc)/(2m).

The general solution to the differential equation is

x(t) = K1 exp(r1t) +K2 exp(r2t)

where the constants K1 and K2 are computed from the initial data for the differential equations. Regardless
of their values, the fact that r1 < 0 and r2 < 0 guarantees that

lim
t→∞

x(t) = 0

Thus, the ball reaches the origin after an infinite amount of time. Well, this is only a physical model, so for
all practical purposes, x(t) becomes effectively zero after some amount of time. The larger the value of a,
the sooner the ball gets (nearly) to the origin.

Case 2. Let the roots be complex-valued with negative real parts, say r1 = α + βi and r2 = α − βi where
α = −a/(2m) and β =

√
4mc− a2/(2m). The general solution to the differential equation is

x(t) = exp(αt) [K1 cos(βt) +K2 sin(βt)]

The derivative is

ẋ(t) = exp(αt) [−βK1 sin(βt) + βK2 cos(βt)] + α exp(αt) [K1 cos(βt) +K2 sin(βt)]

26

Let x(0) = p and ẋ(0) = v. Replacing these in the equations for x(t) and ẋ(t) leads to p = K1 and
v = βK2 + αK1. The solution is K1 = p and K2 = (v − αp)/β. Thus, the solutions are shown below with
i = 1 or i = 2.

xi(t) = exp(αt)

[
pi cos(βt) +

(
vi − αpi

β

)
sin(βt)

]
The ball reaches the origin when x1(t) = 0 and x2(t) = 0. Since the exponential terms are not zero (for
finite time), the implied conditions are

p1 cos(βt) +
(
v1−αp1

β

)
sin(βt) = 0

p2 cos(βt) +
(
v2−αp2

β

)
sin(βt) = 0

Let p = (p1, p2) and v = (v1, v2). If p and (v−αp)/β (that is, p and v are parallel, then the two displayed
equations are really only one independent equation. Sovling the first we have,

t =
1

β
tan−1

(
−βp1

v1 − αp1

)
The ball reaches the origin in finite time. Notice that physically what happens is that the velocity of the
ball is initially pointing to the origin. The ball is (eventually) pulled directly to the origin.

If p and (v− αp)/β are not parallel, then the two equations are of the form

(cos(βt), sin(βt)) ·
(
pi,

vi − αpi
β

)
= 0

Thus, (
pi,

vi − αpi
β

)
= λi(− sin(βt), cos(βt))

for some scalars λi. However this implies that p and (v−αp)/beta are parallel, a contradiction to our initial
assumption. Consequently, both equations cannot be simultaneously zero and the ball can never reach the
origin in finite time. It does in infinite time since limt→∞ exp(αt) = 0 because α < 0.

27

Exercise 3.11. Let (x1, x2) = (v1t, v2t) for some constants v1 and v2. The derivatives are (ẋ1, ẋ2) = (v1, v2)
and (ẍ1, ẍ2) = (0, 0). Replacing these in the first equation of motion,

0 = ẍ1 + 4x1

a1

(
x1ẍ1+ẋ

2
1

a21
+

x2ẍ2+ẋ
2
2

a22

)
− 2gx1

a21

= 0 + 4v1t
a21

(
v21
a21

+
v22
a22

)
− 2gv1t

a21

A few algebraic steps will show that
v21
a21

+
v22
a22

=
g

2

The same condition is derived by substitution of the proposed solution into the second equation of motion.
The only way (x1, x2) = (v1t, v2t) is a solution is if this condition is satisfied. If the condition is not satisfied,
then the path of motion in the (x1, x2) plane is not a straight line.

28

Exercise 3.13. To construct the Lagrangian equations of motion, we need to construct a height function
for the chute, a function x3 = h(x1, x2). The independent variables x1 and x2 are what the Lagrangian
equations are based on.

Consider a cylinder whose axis is the parametric line P + tD where P is a point on the line and D is a
unit-length direction for the line. If R is the radius of the cylinder, the general quadratic equation that
defines the cylinder is

(X−P)T
(
I −DDT

)
(X−P) = R2

where I is the identity matrix and the superscript T denotes the transpose operation.

I hear you ask “Where did this come from?” The point P may be used as the origin of a coordinate system
with coordinate axis directions U, V, and D. The directions are all unit-length and mutually perpendicular.
Any point X may be written in the coordinate system as

X = P + y1U + y2V + y3D

with y1 = U · (X−P), y2 = V · (X−P), and y3 = D · (X−P). For a point on the cylinder, the distance
from the axis is R units. This distance is measured in the plane spanned by U and V, so y21 + y22 = R2 is
required. Rearranging terms,

y1U + y2V = (X−P)− (D · (X−P))D

The squared lengths of the two sides of the equation must be equal. The left-hand side has squared length
y21 + y22 = R2. The right-hand side has squared length:

R2 = |(X−P)− (D · (X−P))D|2

= (X−P) · (X−P)− 2(D · (X−P))2 + (D · (X−P))2(D ·D)

= (X−P) · (X−P)− (D · (X−P))2

= (X−P)T(X−P)− ((X−P)TD)(DT(X−P))

= (X−P)TI(X−P)− (X−P)T(DDT)(X−P)

= (X−P)T
(
I −DDT

)
(X−P)

In our particular problem, the cylinder axis direction is obtained from basic algebra and trigonometry. The
axis lies in the plane x2 = 0. Using part (b) of the figure that is associated with the exercise, if x3 increases
by H units, then x1 decreases by L cos θ units. The side of the triangle opposite to θ has length H, the
hypotenuse has length L, so the adjacent side has length

√
L2 −H2. Using the fact that cosine is adjacent

over hypotenuse, cos θ =
√
L2 −H2/L. Note also that sin θ = H/L. A unit-length direction for the cylinder

is therefore
D = (− cos θ, 0, sin θ)

Now to compute a point on the cylinder axis. The next figure shows a point

P = (0, 0, α)

on the axis.

29

Clearly, R = α cos θ, so α = R/ cos θ. Let D = (d1, 0, d3), P = (0, 0, p3), and X = (x1, x2, x3). We will use
the fact that d21 + d23 = 1 several times. Expanding the cylinder equation,

0 = (X−P)T
(
I −DDT

)
(X−P)−R2

= x21 + x22 + (x3 − p3)2 − (d1x1 + d3(x3 − p3))2

= (1− d3)2(x3 − p3)2 − 2d1d3x1(x3 − p3) + (1− d21)x21 + x22 −R2

= d21(x3 − p3)2 − 2d1d3x1(x3 − p3) + d23x
2
1 + x22 −R2

= [d1(x3 − p3)− d3x1]2 + x22 −R2

Thus,

d1(x3 − p3)− d3x1 = ±
√
R2 − x22

The choice of sign on the right-hand side is based on knowing that the point (x1, x2, x3) = (0, 0, 0) is on the
cylinder. Substituting in this point, we have

(cos θ)(R/ cos θ) = −d1p3 = ±R

For this to be equal, we need the plus sign on the right. Consequently,

d1(x3 − p3)− d3x1 =
√
R2 − x22

defines the chute. Solving for x3,

x3 = p3 +
d3x1 +

√
R2 − x22

d1
=
LR−Hx1 − L

√
R2 − x22

L cos θ

The height function h(x1, x2) is the right-hand side of this equation.

The exercise is to compute the Lagrangian equations of motion. The details are tedious, but let’s look ahead
to Exercise 3.14 where you are asked to construct the equations of motion for a height field in general.
Using the formula constructed in that exercise, we need to substitute in the first- and second-order partial
derivatives of h(x1, x2). These are

hx1
=
−H
L cos θ

, hx2
=

x2
(R2 − x22)1/2 cos θ

, hx1x1
= hx1x2

= 0, hx2x2
=

R2

(R2 − x22)3/2 cos θ

Substituting into the general equations of motion, ẍ1

ẍ2

 = −

 R2ẋ2
2

(R2−x2
2)

3/2 cos θ
+ g

1 + H2

L2 cos2 θ +
x2
2

(R2−x2
2) cos

2 θ

 −H
L cos θ

x2

(R2−x2
2)

1/2 cos θ

30

Notice that x2(t) ≡ 0 is a solution to the second equation of the system. That means if the ball starts in
the center of the chute with no initial speed in the x2 component, then it must remain in the center of the
chute. The other equation of motion tells you how x1 varies,

ẍ1 =
g
(

H
L cos θ

)
1 +

(
H

L cos θ

)2 =
g tan θ

1 + tan2 θ
=
g

2
sin(2θ)

The right-hand side is a positive constant. The acceleration in the x1 direction is always positive, so the
speed increases as well as the position in that direction:

x1(t) = x1(0) + ẋ1(0)t+ (g sin(2θ)/4)t2

Notice that as you increase the angle θ, the acceleration increases, as you expect.

If you add viscous friction, the differential equation for x2 is still of the form ẍ2 = Sx2 where S is a scalar
function of various parameters, including g and any new terms introduced by the addition of viscous friction.
The function x2(t) ≡ 0 is still a solution, so if the ball starts in the center of the chute with no initial speed
in the x2 direction, it remains in the center of the chute.

31

Exercise 3.15. The angle between the line segment and vertical axis is θ = π/4. The initial direction of
the segment is D0 = (1, 0, 1)/

√
2. The line segment is rotated about the x3-axis by an amount θt for time

t. The rotation is towards the (x2, x3) plane. The direction of the segment at that time is

D(t) = Rot(θt,k)D0 = (cos(θt), sin(θt), 1)/
√

2

The position of the mass is initially at (b, 0, b). At later time, the mass is on the line segment with direction
D(t), so is

x(t) = λ(t)D(t)

where 0 ≤ λ(t) ≤ L, L is the length of the line segment, and λ(0) = bL/a. The mass is constrained to lie
on the line segment, so the parameter λ is the one degree of freedom in the system. To set up the problem
using Lagrangian dynamics, we think of the position as a function of time t and parameter λ, say x(t, λ).

The velocity is

ẋ =
∂x

∂t
+ λ̇

∂x

∂λ
= λḊ(t) + λ̇D(t)

where
Ḋ(t) = θ(− sin(θt), cos(θt), 0)/

√
2

The kinetic energy is

T =
m

2
|ẋ|2 =

m

2

∣∣∣λḊ + λ̇D
∣∣∣2 =

m

2

(
1

2
θ2λ2 + λ̇2

)
The relevant derivatives are

∂T

∂λ
=
mθ2

2
λ,

∂T

∂λ̇
= mλ̇,

d

dt

(
∂T

∂λ̇

)
= mλ̈

The force on the mass uses Hooke’s Law. The rest length ` of the spring is the length of the line segment
connecting (c, 0, 0) to (b, 0, b),

` =
√

(b− c)2 + b2

The spring constant is K > 0. The force F exerted on the mass is towards the fixed point (c, 0, 0),

F = −K(|x(t)− cı| − `) x(t)− cı
|x(t)− cı|

where ı = (1, 0, 0). At time zero, x(0) = (b, 0, b), in which case |x(0)− cı| = |(b− c, 0, b)| = ` and F(0) = 0.
The spring is initially unstretched, as hypothesized. The generalized force is

Fλ = F · ∂x∂λ
= −K(|x(t)− cı| − `) x(t)−cı

|x(t)−cı| ·D(t)

= −K
(

1− `√
λ2−
√
2c cos(θt)λ+c2

)
(λ− c cos(θt)/

√
2)

The equation of motion is

mλ̈− mθ2

2
λ = Fλ, λ(0) = bL/a

32

Since this is a second-order equation, we also need to know λ̇(0) before we can solve this using numerical
methods. The initial line segment on which the mass lies is initially at rest, so the mass has initial velocity
ẋ(0) = 0. Also true is λ̇(t) = D(t) · ẋ(t), so

λ̇(0) = D(0) · ẋ(0) = (a, 0, a) · (0, 0, 0) = 0

You are now ready to solve the equation numerically. The complexity of the differential equation does not
lead to a closed form solution, so a numerical approach is your only hope.

Notice that the time the mass arrives in the (x2, x3) plane is determined by πt/4 = θt = π/2, so t = 2. You
need to numerically solve for d = λ(2).

In summary, you need to solve

λ̈ =
π2

32
λ− K

m

(
1− `√

λ2 − 2λ cos(πt/4)c/sqrt2 + c2

)
(λ− cos(πt/4)c/

√
2)

with λ(0) = bL/a and λ̇(0) = 0. The parameters you need to select in the solver are L, c, m, and K. The
value ` =

√
(b− c)2 + c2. You need to numerically solve for d = λ(2). The same conversion is used as always

to reduce the second-order equation to a first-order system, λ̇ = u, and u̇ = λ̈.

The following code uses the same pattern that occurs in the many physics applications on the CDROM. The
file PhysicsModule.h contains

#ifndef PHYSICSMODULE_H

#define PHYSICSMODULE_H

#include "Wm5OdeSolver.h"

#include "Wm5Vector3.h"

class PhysicsModule

{

public:

// Construction and destruction.

PhysicsModule ();

~PhysicsModule ();

// Initialize the differential equation solver.

void Initialize (double time, double deltaTime, double lambda,

double lambdaDot);

double GetTime () const { return mTime; }

double GetDeltaTime () const { return mDeltaTime; }

double GetLambda () const { return mState[0]; }

double GetLambdaDot () const { return mState[1]; }

Wm5::Vector3d GetPosition () const;

// Take a single step of the solver.

void Update ();

// System parameters.

double Mass; // m

33

double SegmentLength; // L, a = L/sqrt(2)

double SpringEnd; // c

double SpringConstant; // K

private:

// state and auxiliary variables

enum { PM_STATES = 2, PM_AUXS = 7 };

double mTime, mDeltaTime, mState[PM_STATES], mAux[PM_AUXS];

// ODE solver (specific solver assigned in the cpp file)

Wm5::OdeSolverd* mSolver;

static void OdeFunction (double time, const double* state,

void* data, double* output);

};

#endif

The file PhysicsModule.cpp contains

#include "PhysicsModule.h"

#include "Wm5OdeRungeKutta4.h"

#include "Wm5Math.h"

using namespace Wm5;

//--

PhysicsModule::PhysicsModule ()

{

Mass = 0.0;

SegmentLength = 0.0;

SpringEnd = 0.0;

SpringConstant = 0.0;

memset(mState,0, PM_STATES*sizeof(double));

memset(mAux,0, PM_AUXS*sizeof(double));

mSolver = 0;

}

//--

PhysicsModule::~PhysicsModule ()

{

delete mSolver;

}

//--

void PhysicsModule::Initialize (double time, double deltaTime,

double lambda, double lambdaDot)

{

mTime = 0.0;

mDeltaTime = deltaTime;

// State variables.

mState[0] = lambda;

mState[1] = lambdaDot;

// Auxiliary variables.

34

mAux[0] = Mathd::Sqrt(0.5); // 1/sqrt(2)

mAux[1] = 0.25*Mathd::PI; // pi/4

mAux[2] = Mathd::PI*Mathd::PI/32.0; // pi^2/32

mAux[3] = SpringEnd*mAux[0]; // c/sqrt(2)

mAux[4] = SpringEnd*SpringEnd; // c^2

mAux[5] = SpringConstant/Mass; // K/m

mAux[6] = (GetPosition()-SpringEnd*Vector3d::UNIT_X).Length(); // ell

// RK4 differential equation solver.

delete mSolver;

mSolver = new OdeRungeKutta4d(PM_STATES,mDeltaTime,OdeFunction, mAux);

}

//--

Vector3d PhysicsModule::GetPosition () const

{

double lambdaDivSqrt2 = mState[0]*mAux[0];

double thetaTimesT = mAux[1]*mTime;

return Vector3d(

lambdaDivSqrt2*Mathd::Cos(thetaTimesT),

lambdaDivSqrt2*Mathd::Sin(thetaTimesT),

lambdaDivSqrt2);

}

//--

void PhysicsModule::Update ()

{

// Take a single step in the ODE solver.

mSolver->Update(mTime, mState, mTime, mState);

}

//--

void PhysicsModule::OdeFunction (double time, const double* state,

void* data, double* output)

{

double* aux = (double*)data;

// lambda function

output[0] = state[1];

// dot(lambda) function

// c*cos(pi*t/4)/sqrt(2)

double tmp0 = aux[3]*Mathd::Cos(aux[0]*time);

// lambda - c*cos(pi*t/4)/sqrt(2)

double tmp1 = state[0] - tmp0;

// lambda - 2*c*cos(pi*t/4)/sqrt(2)

double tmp2 = state[0] - 2.0*tmp0;

// lambda*(lambda - 2*c*cos(pi*t/4)/sqrt(2)) + c^2

double tmp3 = state[0]*tmp2 + aux[4];

// 1 - ell/sqrt(lambda*(lambda - 2*c*cos(pi*t/4)/sqrt(2) + c^2))

35

double tmp4 = 1.0 - aux[6]*Mathd::InvSqrt(tmp3);

output[1] = aux[2]*state[0] - aux[5]*tmp4*tmp1;

}

//--

The main program is in a file TestExample3p15.cpp

#include "PhysicsModule.h"

using namespace Wm5;

int main ()

{

PhysicsModule module;

module.Mass = 1.0;

module.SegmentLength = 4.0;

module.SpringEnd = 1.0;

module.SpringConstant = 10.0;

double time = 0.0;

double deltaTime = 0.01;

double lambda = 0.5*module.SegmentLength; // start at midpoint

double lambdaDot = 0.0;

module.Initialize(time, deltaTime, lambda, lambdaDot);

std::ofstream outFile("solution.txt");

Vector3d pos = module.GetPosition();

outFile << "i = 0 ";

outFile << "lambda = " << module.GetLambda() << ’ ’;

outFile << "x1 = " << pos.X() << ’ ’;

outFile << "x2 = " << pos.Y() << ’ ’;

outFile << "x3 = " << pos.Z() << std::endl;

double finalTime = 2.0;

const int imax = (int)(finalTime/deltaTime + 0.5);

for (int i = 1; i <= imax; i++)

{

module.Update();

pos = module.GetPosition();

outFile << "i = " << i << ’ ’;

outFile << "lambda = " << module.GetLambda() << ’ ’;

outFile << "x1 = " << pos.X() << ’ ’;

outFile << "x2 = " << pos.Y() << ’ ’;

outFile << "x3 = " << pos.Z() << std::endl;

}

return 0;

}

The first and last lines of the output file solution.txt are shown below (with minor formatting changes)

i = 0 lambda = 2 x1 = 1.41421 x2 = 0 x3 = 1.41421

36

i = 200 lambda = 1.15214 x1 = -8.54596e-016 x2 = 0.814683 x3 = 0.814683

Notice that x1 is effectively zero, so the final position of the mass is in the (x2, x3) plane, as desired. The
value we wanted to compute is d = 0.814683. Notice that λ has decreased, so the mass has slipped down the
line segment towards the origin.

37

Exercise 3.17. The Foucault pendulum equations of motion were established using Newton’s Law of Motion.
A Lagrangian approach can be used instead. From pages 92 through 94, the position of the mass m is

r(t) = LR

where L is the length of the pendulum rod and where the coordinate axes are

P = (− sin θ, cos θ, 0)

Q = (− cos θ cosφ,− sin θ cosφ, sinφ)

R = (cos θ sinφ, sin θ sinφ, cosφ)

The velocity is

v(t) =
Dr

Dt
= L

[
(θ̇ sinφ)P− φ̇Q

]
The kinetic energy is

T =
m

2
|v(t)|2 =

mL2

2
(θ̇2 sin2 φ+ φ̇2)

The relevant derivatives are

∂T
∂θ = 0, ∂T

∂φ = mL2θ̇2 sinφ cosφ, ∂T
∂θ̇

= mL2θ̇ sin2 φ, ∂T
∂φ̇

= mL2φ̇

d
dt

(
∂T
∂θ̇

)
= mL2(θ̈ sin2 φ+ 2θ̇φ̇ sinφ cosφ), d

dt

(
∂T
∂φ̇

)
= mL2φ̈

If Fθ and Fφ are the generalized forces, then the equations of motion are

mL2(θ̈ sin2 φ+ 2θ̇φ̇ sinφ cosφ) = Fθ

mL2(φ̈− θ̇2 sinφ cosφ) = Fφ

The force on the mass itself is

F = m
D2r

Dt
= m

(
−2w× Dr

Dt
+ gk − τR

)
The generalized force with respect to θ is

Fθ = F · ∂r

∂θ
= F · L∂R

∂θ
= (mL sinφ)

D2r

Dt
·P = (mL sinφ)[2Lωφ̇(− cosλ sin θ sinφ+ sinλ cosφ)]

The last equality comes from the displayed equation on page 93 that immediately precedes equation (3.7).
The generalized force with respect to φ is

Fφ = F · ∂r

∂φ
= F · L∂R

∂φ
= (−mL)

D2r

Dt
·Q = (−mL)[2Lωθ̇ sinφ(− cosλ sin θ sinφ+ sinλ cosφ) + g sinφ]

The last equality comes from the second displayed equation on page 94.

Substituting these into our earlier equations, canceling the common term mL2 sinφ from the first equation,
and canceling the common term mL2 from the second equation, we have

θ̈ sinφ+ 2θ̇φ̇ cosφ = 2ωφ̇(− cosλ sin θ sinφ+ sinλ cosφ)

φ̈− θ̇2 sinφ cosφ = −2ωθ̇ sinφ(− cosλ sin θ sinφ+ sinλ cosφ)− g
L sinφ

38

which are exactly the equations we derived using Newton’s Laws.

The problem is now modified so that the point mass is replaced by a solid cone of mass m, height h, and
radius r. The idea is similar to that shown in Figure 3.12. The value L measures the distance from the joint
of the pendulum to the center of mass of the cone. The kinetic energy has an additional term, and is now

T =
m

2
|v(t)|2 +

1

2

(
wTJw

)
The second term involves the angular velocity w and the world inertia tensor J of the cone. The cone axis
is a principal direction, and is in the direction of R. The vectors P and Q serve as two other principal
directions, based on the symmetry of the cone.

Consider the standard cone of height h and radius r whose circular base is on the xy-plane, whose axis is
the z-axis, and whose vertex is at (0, 0, h). Let’s assume a mass density of 1. The mass is just the volume
of the cone,

m =
πr2h

3

By symmetry, the center of mass (x̄, ȳ, z̄) has components x̄ = ȳ = 0. The z̄ component must be chosen so
that half the volume lies above z = z̄. The region above z = z̄ is itself a cone of radius r(1− z̄/h) and height
h− z̄. The volume is πr2(1− z̄/h)2(h− z̄)/3. The ratio of this volume to that of the full cone must be

1

2
=
πr2(1− z̄/h)2(h− z̄)/3

πr2h/3
= (1− z̄/h)3

which implies

z̄ = h
(

1− 2−1/3
)

Consequently,
L = h− z̄ = h/21/3

.
= 0.7937h

The inertia tensor component Ixx is constructed below where V is the region occupied by the cone, ρ =
r(1− z/h)

Ixx =
∫
V
y2 + z2 dx dy dz

=
∫ h
0

∫ ρ
−ρ
∫√ρ2−y2
−
√
ρ2−y2

y2 + z2 dx dy dz

=
∫ h
0

∫ ρ
−ρ 2(y2 + z2)

√
ρ2 − y2 dy dz

=
∫ h
0

(∫ ρ
−ρ 2y2

√
ρ2 − y2 dy

)
+ z2

(∫ ρ
−ρ

√
ρ2 − y2 dy

)
dz

=
∫ h
0

(πρ4/4 + πρ2z2) dz

= π
∫ h
0

(
r4(1− z/h)4/4 + z2(1− z/h)2

)
dz

= πr2h(2h2+3r2)
60

= m 2h2+3r2

20

By symmetry of the cone with respect to x and y, or by a similar integration,

Iyy = Ixx = m
2h2 + 3r2

20

39

Also by symmetry,
Ixy = Ixz = Iyz = 0

The last tensor component is obtained by integration, but using cylindrical coordinates s =
√
x2 + y2, θ,

and z,

Izz =
∫
V
x2 + y2 dx dy dz

=
∫ h
0

∫ 2π

0

∫ r(1−z/h)
0

s3 ds dθ dz

= πr4h
10

= m 3r2

10

The inertia tensor in world coordinates is

J =
[

P Q R
]

Ixx 0 0

0 Ixx 0

0 0 Izz

PT

QT

RT

 = Ixx(PPT + QQT) + IzzRRT

In the book we had w = ω[(cosλ)− (sinλ)k]. Consequently,

wTJw = Ixx
(
(P ·w)2 + (Q ·w)2

)
+ Izz(R ·w)2

= Ixxω
2[(cosλ cos θ)2 + (cosλ sin θ cosφ+ sinλ sinφ)2] + Izzω

2(cosλ sin θ sinφ− sinλ cosφ)2

The derivatives for T that we had in the case of a single point mass must be appended with the various
derivatives of wTJw/2. As you can see, this will be a tedious chore, but tractable. If you want to actually
code this, I recommend using a symbolic mathematics program to generate these derivatives, and the resulting
C code.

40

Exercise 3.19. The presence of the y-axis label in Figure 3.13 is misleading, but the text that goes with
the figure correctly states the situation. The value y3 is the distance from the ceiling to the center of the
pulley. The value y1 is the additional distance needed to get from the pulley center to the mass m1. That
is, y1 is not the distance from the ceiling to the mass. Similarly, y2 is the additional distance needed to get
from the pulley center to the mass m2.

Figure 3.15 has a different intent, just to help clarify. The value y1 is the distance from the ceiling to the
center of the large pulley. The value y2 is the distance from the ceiling to the small pulley center. The value
y3 is the distance from the ceiling to the mass m3.

First, notice that y1 does not vary in this problem. The values y2 and y3 vary. The angles θ1 and θ2 for the
pulleys, measured similar to that of Figure 3.13, also vary. Any change in θ1 is directly related to a change
in y2 − y1. Similarly, any change in θ2 is directly related to a change in y3 − y2. Thus,

R1θ̇1 = ẏ2 − ẏ1 = ẏ2, R2θ̇2 = ẏ3 − ẏ2

Our system has only two degrees of freedom, y2 and y3.

The kinetic energy is

T =
m2

2
ẏ22 +

I1
2
θ̇21 +

m3

2
ẏ23 +

I2
2
θ̇22 =

m2

2
ẏ22 +

I1
2R2

1

ẏ22 +
m3

2
ẏ23 +

I2
2R2

2

(ẏ3 − ẏ2)2

The relevant derivatives are

∂T
∂y2

= 0

∂T
∂y3

= 0

∂T
∂ẏ2

= m2ẏ2 + I1
R2

1
ẏ2 + I2

R2
2
(ẏ2 − ẏ3)

∂T
∂ẏ3

= m3ẏ3 + I2
R2

2
(ẏ3 − ẏ2)

d
dt

(
∂T
∂ẏ2

)
= m2ÿ2 + I1

R2
1
ÿ2 + I2

R2
2
(ÿ2 − ÿ3)

d
dt

(
∂T
∂ẏ3

)
= m3ÿ3 + I2

R2
2
(ÿ3 − ÿ2)

We need to calculate the generalized forces on the objects. Let S1 denote the length of the spring: S1 > L1

indicates stretching, S1 < L1 indicates compression. The force on the small pulley has two components, a
gravitational one and one due to the spring,

F2 = m2g− c1(S1 − L1)

Observe that S1 − y2 = K1, a constant. This is just a statement that the wire connecting the top of the
spring to the center of the small pulley must be constant. If the small pulley moves downward, then the
string is stretched, in which case S1 increases. However, y2 can also increase by exactly that the increase in
S1 since the wire is fixed length. The force on the small pulley is therefore

F2 = m2g− c1(K1 − L1 + y2)

Let S2 denote the length of the spring: S2 > L2 indicates stretching, S2 < L2 indicates compression. The
force on the point mass is

F3 = m3g− c2(S2 − L2)

41

Observe that S2 − y3 + 2y2 = K2, a constant. This is also a statement about conservation of length. For a
fixed y2, if the point mass moves downward, say y3 → y3 + ∆, then the string must be stretched accordingly,
say S2 → S2 + ∆. Then

(S2 + ∆)− (y3 + ∆) + 2y2 = S2 − y3 + 2y2 = K2

Now if y2 increases, say y2 → y2+∆, then the small pulley moves downward. The string must be compressed
simultaneously while y3 increases, say S2 → S2 −∆ and y3 → y3 + ∆. Then

(S2 −∆)− (y3 + ∆) + 2(y2 + ∆) = S2 − y3 + 2y2 = K2

The force on the point mass is therefore

F3 = m3g− c2(K2 − L2 + y3 − 2y2)

The generalized forces are
Fy2 = m2g − c1(K1 − L1 + y2)

and
Fy3 = m3g − c2(K2 − L2 + y3 − 2y2)

The equations of motion are

m2ÿ2 + I1
R2

1
ÿ2 + I2

R2
2
(ÿ2 − ÿ3) = m2g − c1(K1 − L1 + y2)

m3ÿ3 + I2
R2

2
(ÿ3 − ÿ2) = m3g − c2(K2 − L2 + y3 − 2y2)

42

Exercise 3.21. The equations of motion for the system were shown to be

θ̈ =
Fθ

(mL2 + µ2) sin2 φ
, ψ̈ =

−Fθ cosφ

(mL2 + µ2) sin2 φ

The generalized force for θ was shown to be

Fθ = F · L(− sin θ sinφ, cos θ sinφ, 0)

If the force is gravitational, F = −mgk, then Fθ = 0 for all time. Thus,

θ̈ = 0, ψ̈ = 0

This says the angular accelerations of the pipe and disk are zero. Integrating, the values θ̇(t) = θ̇0 and
ψ̇(t) = ψ̇(0) for all time. That is, the angular speeds are constant.

43

Exercise 3.23. The potential energy for gravity is

Vgravity = mgr sin θ

and the potential energy for the spring is

Vspring =
c

2

((√
s2(cos θ − 1)2 + (h+ s sin θ)2 − `

)2
− (h− `)2

)
The potential energy is

V = Vgravity + Vspring

the kinetic energy is

T =
m

2
r2θ̇2

and the Lagrangian is
L = T − V

The equation of motion is

0 = d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ

= mr2θ̈ + ∂V
∂θ

= mr2θ̈ +mgr cos θ + c

(
1− `√

s2(cos θ−1)2+(h+s sin θ)2

)(
s2(1− cos θ) sin θ + s(h+ s sin θ) cos θ

)
For equilibrium at θ = 0, we need all the terms, minus the θ̈ term, to evaluate to zero when θ is zero. This
condition is

mgr + cs(h− `) = 0

just as it was in the book.

44

Exercise 3.25. The kinetic energy is

T =
m1

2
(ẋ21 + ẏ21) +

m2

2
(ẋ22 + ẏ22) +

m3

2
(ẋ23 + ẏ23)

but only three variables are freely chosen. Once again we choose the angles to be the degrees of freedom.
The construction in Example 3.15 provides equations you can use here, but with a few more added to them.
The position of the third mass is

x3 = r1 sin θ1 + r2 sin θ2 + r3 sin θ3

y3 = h− r1 cos θ1 − r2 cos θ2 − r3 cos θ3

and the derivatives are

ẋ3 = r1θ̇1 cos θ1 + r2θ̇2 cos θ2 + r3θ̇3 cos θ3

ẏ3 = r1θ̇1 sin θ1 + r2θ̇2 sin θ2 + r3θ̇3 sin θ3

The kinetic energy reduces to

T = m1

2

(
(r1θ̇1 cos θ1)2 + (r1θ̇1 sin θ1)2

)
+

m2

2

(
(r1θ̇1 cos θ1 + r2θ̇2 cos θ2)2 + (r1θ̇1 sin θ1 + r2θ̇2 sin θ2)2

)
+

m3

2

(
(r1θ̇1 cos θ1 + r2θ̇2 cos θ2 + r3θ̇3 cos θ3)2 + (r1θ̇1 sin θ1 + r2θ̇2 sin θ2 + r3θ̇3 sin θ3)2

)
= m1

2

(
r21 θ̇

2
1

)
+

m2

2

(
r21 θ̇

2
1 + r22 θ̇

2
2 + 2r1r2θ̇1θ̇2 cos(θ1 − θ2)+

)
m3

2

(
r21 θ̇

2
1 + r22 θ̇

2
2 + r23 θ̇

2
3 + 2r1r2θ̇1θ̇2 cos(θ1 − θ2) + 2r1r3θ̇1θ̇3 cos(θ1 − θ3) + 2r2r3θ̇2θ̇3 cos(θ2 − θ3)

)
The potential energy is

V = −m1g(h− y1)−m2g(h− y2)−m3g(h− y3)

The Lagrangian is L = T − V and the equations of motion are

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0,

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0,

d

dt

(
∂L

∂θ̇3

)
− ∂L

∂θ3
= 0

I will leave it to you to crank out those derivatives. If you had a chain of n masses connected by rigid rods,
the details are even more horrendous. It is possible, however, to figure out the pattern and write source code
to handle n masses. Or if you prefer, generate source code using a symbolic mathematics package.

45

Exercise 3.27. The three degrees of freedom are r, θ, and φ. We chose θ̇0 = 0, which led to θ(t) = θ(0) = θ0
for all time (θ is constant). You need to specify the initial angle θ0. You also need to specify the initial data
r0 = r(0), ṙ0 = ṙ(0), φ0 = φ(0), and φ̇0 = φ̇(0). The first differential equation to solve is

r̈ =
β2

r3
− γ

r2

where

β = r20φ̇0, γ =
c2
c1

=
Gm1m2

m1m2/(m1 +m2)
= G(m1 +m2)

The parameters G, m1, and m2 must be selected by the user. The second differential equation to solve is

φ̇ =
β

r2

By defining u = ṙ, we have set up the problem as a system of three first-order equations,

ṙ = u, r(0) = r0

u̇ = β2

r3 −
γ
r2 , u(0) = ṙ0

φ̇ = β
r2 , φ(0) = φ0

The pattern that appears in the PhysicsModule files may be used here. The state variables are r, u, and φ.
The public data members are m1, m2, and G. The initial conditions are r0, ṙ0, φ0, and φ̇0. The auxiliary
variables are β and γ.

46

Exercise 3.29. The essence of the problem is discussed in Section 2.2.2. The position function is decomposed
by using the center of mass as the origin, and the columns of an orientation matrix as the coordinate axes.
For the thin rod,

r = (x, y) + L(cos θ, sin θ)

where (x, y) is the center of mass. You may rewrite this in matrix form as

r =

 x

y

+

 cos θ − sin θ

sin θ cos θ

 L

0

 =

 x

y

+R(θ)

 L

0

with L ∈ [−L2, L1]. In “body space”, the center of mass of the rod is located at the origin and oriented to
be on the x-axis. The orientation matrix R(θ) rotates the rod about the origin. Then the center of mass in
the world is added to the rod, the final result being in “world space”.

A general curve can be defined in body space. The center of mass c is computed according to the integral
methods on page 48 (curve in the plane) or page 53 (curve in space). The center of mass is subtracted from
your initial curve description. You may or may not want to reorient the initial curve. In the end, you have
a curve b(s) in body space. I have indicated the variable is arc length s, but the discussion on pages 48 and
53 show how you convert back to the curve parameter. The arc length parameter is in [0, L] where L is the
total length of the curve. In 2D the position is

r(t, s) = c(t) +R(θ(t))b(s)

The velocity is

v(t, s) =
∂r

∂t
= ċ + θ̇

dR

dθ
b(s)

where

ċ =

 ẋ

ẏ

 , dR

dθ
=

 − sin θ − cos θ

cos θ − sin θ

Thus,

v =

 ẋ− θ̇(b0 sin θ + b1 cos θ)

ẏ + θ̇(b0 cos θ − b1 sin θ)

where b = (b0, b1).

Let the mass density be δ(s). The infinitesimal mass is dm = δ(s)ds and the total mass is

µ0 =

∫ L

0

dm =

∫ L

0

δ(s) ds

The kinetic energy is

T (x, y, θ) =

∫ L

0

dm

2
|v|2 =

∫ L

0

1

2
|v|2 δ(s) ds

But notice that
|v|2 = ẋ2 + ẏ2 + θ̇2(b20 + b21)

so
T =

µ0

2
(ẋ2 + ẏ2) +

µ2

2
θ̇2

47

where

µ2 =

∫ L

0

|b(s)|2 δ(s) ds

The only differences between this formula and the one for a thin rod are the values of µ0 and µ2. The set up
for the Lagrangian equations of motion proceeds as usual, computing the relevant derivatives of the kinetic
energy.

The generalized forces are

Fx =
∫ L
0

F · ∂r∂x δ(s) ds =
∫ L
0

F · ı δ(s) ds

Fy =
∫ L
0

F · ∂r∂y δ(s) ds =
∫ L
0

F · δ(s) ds

Fθ =
∫ L
0

F · ∂r∂θ δ(s) ds =
∫ L
0

F · dRdθ b δ(s) ds

The integrals are as complicated as for the thin rod, especially when rough friction is used. However,
numerical integration techniques still apply.

48

Exercise 3.31. The application on the CDROM named RoughPlaneSolidBox is an implementation that
uses rough friction. It does not incorporate static friction, but may be easily modifed to do so.

49

Exercise 3.33. The center of mass of the top is located at r = `ξ3, as mentioned in Example 3.19. As in
the example, we look at the system in body coordinates. The velocity of the center of mass is zero in body
coordinates: ξ3 is unchanging in body coordinats since it is a body axis.

The contribution of the angular velocity w to the kinetic energy is

T =
1

2
wTJw

where w is the angular velocity in body coordinates and J is the inertia tensor in body coordinates. We
know in body coordinates that the top is radially symmetric about the top axis, so its inertia tensor is the
diagonal matrix

J = Diag(µ1, µ1, µ3)

The angular velocity in body coordinates is provided in equation (3.48),

wbody = (φ̇ cosψ + θ̇ sinψ sinφ)ξ1 + (−φ̇ sinφ+ θ̇ cosψ sinφ)ξ2 + (ψ̇ + θ̇ cosφ)ξ3

The kinetic energy is

T = 1
2wTJw

= µ1

2 (φ̇ cosψ + θ̇ sinψ sinφ)2 + µ1

2 (−φ̇ sinφ+ θ̇ cosψ sinφ)2 + µ3

2 (ψ̇ + θ̇ cosφ)2

= µ1

2 (φ̇2 + θ̇2 sin2 φ) + µ3

2 (ψ̇ + θ̇ cosφ)2

The relevant derivatives are

∂T

∂θ
= 0,

∂T

∂φ
= µ1θ̇

2 sinφ cosφ+ µ3(ψ̇ + θ̇ cosφ)(−θ̇ sinφ),
∂T

∂ψ
= 0

and
∂T

∂θ̇
= µ1θ̇ sin2 φ+ µ3(ψ̇ + θ̇ cosφ) cosφ,

∂T

∂φ̇
= µ1φ̇,

∂T

∂ψ̇
= µ3(ψ̇ + θ̇ cosφ)

The Lagrangian equations of motion are

d
dt

(
µ1θ̇ sin2 φ+ µ3(ψ̇ + θ̇ cosφ) cosφ

)
= Fθ

d
dt

(
µ1φ̇

)
− µ1θ̇

2 sinφ cosφ+ µ3(ψ̇ + θ̇ cosφ)(θ̇ sinφ) = Fφ

d
dt

(
µ3(ψ̇ + θ̇ cosφ)

)
= Fψ

where Fθ, Fφ, and Fψ are the generalized forces. Specifically,

Fθ = (−mgη3) · ∂r∂θ
= (−mgη3) · ` [(cos θ sinφ)η1 + (sin θ sinφ)η2 + (0)η3]

= 0

and

Fφ = (−mgη3) · ∂r∂φ
= (−mgη3) · ` [(sin θ cosφ)η1 + (− cos θ cosφ)η2 + (− sinφ)η3]

= mg` sinφ

50

and

Fψ = (−mgη3) · ∂r∂θ
= (−mgη3) · ` [(0)η1 + (0)η2 + (0)η3]

= 0

The equations of motion are

d
dt

(
µ1θ̇ sin2 φ+ µ3(ψ̇ + θ̇ cosφ) cosφ

)
= 0

d
dt

(
µ1φ̇

)
− µ1θ̇

2 sinφ cosφ+ µ3(ψ̇ + θ̇ cosφ)(θ̇ sinφ) = mg` sinφ

d
dt

(
µ3(ψ̇ + θ̇ cosφ)

)
= 0

Observe that the last equation implies
ψ̇ + θ̇ cosφ = c,

a constant, just as we had shown using the Eulerian approach. Replacing this in the first equation, and
using the fact that the time derivative of the expression is zero,

µ1θ̇ sin2 φ+ cµ3 cosφ = γ

where γ is a constant. Again, this is what we had shown in the Eulerian approach. The middle equation
reduces to

φ̈− θ̇2 sinφ cosφ+
cµ3

µ1
θ̇ sinφ = α sinφ

where α = mg`/µ1.

51

Exercise 3.35. The tip of the top moves about the plane only because some force has been applied to the
center of mass. The Euler equations of motion from Example 3.19 still apply for the motion of the top about
its axis and for the motion of the top about the world vertical axis with origin at the tip of the top.

The motion of the tip (center of mass) may be handled separately. In this case, the tip is moved by
(x(t), y(t), z(t)) = (α sin(λt), 0, 0).

If you like, modify the sample application FreeTopFixedTip to include the motion of the tip as listed here.

52

4 Deformable Bodies

No exercises.

53

5 Fluids and Gases

Exercise 5.1

The proof is

(f · ∇)x =
(
f0

∂
∂x0

+ f1
∂
∂x1

+ f2
∂
∂x2

)
· (x0, x1, x2)

= f0
∂(x0,x1,x2)

∂x0
+ f1

∂(x0,x1,x2)
∂x1

+ f2
∂(x0,x1,x2)

∂x2

= f0(1, 0, 0) + f1(0, 1, 0) + f2(0, 0, 1)

= (f0, f1, f2)

= f

54

Exercise 5.3

Using the quotient rule for differentiation,

∂
∂xi

(
xi

(x2
0+x

2
1+x

2
2)

3/2

)
=

(x2
0+x

2
1+x

2
2)

3/2−3x2
i (x

2
0+x

2
1+x

2
2)

1/2

(x2
0+x

2
1+x

2
2)

6/2

=
x2
0+x

2
1+x

2
2−3x

2
i

(x2
0+x

2
1+x

2
2)

5/2

Then

∇ ·
(

x
|x|3

)
= ∂

∂x0

(
xi

(x2
0+x

2
1+x

2
2)

3/2

)
+ ∂

∂x1

(
x1

(x2
0+x

2
1+x

2
2)

3/2

)
+ ∂

∂x2

(
x2

(x2
0+x

2
1+x

2
2)

3/2

)
=

(x2
0+x

2
1+x

2
2−3x

2
0)+(x2

0+x
2
1+x

2
2−3x

2
1)+(x2

0+x
2
1+x

2
2−3x

2
2)

(x2
0+x

2
1+x

2
2)

5/2

= 0

55

Exercise 5.5

Using tensor index notation, M is represented by mij and f is represented by fj . The product M f is
represented by mijfj , where the repeated index j indicates you must sum over j. The index i is the only
free index, which indicates that mijfj represents a vector. The divergence of this vector is

∇ · (M f) =
∂

∂xi
(mijfj) =

(
mij

∂

∂xi

)
fj

where the constants mij are moved outside the derivative (the typical rule of differentiation).

For a vector g represented by gi, the product gTM is represented by gimij , where the repeated index i
indicates you must sum over i. The index j is the only free index, which indicates that gimij represents
a vector. Scalar multiplication is commutative, so we may rewriting this expression as mijgi. In vector
notation, this also represents MTg. In the previously displayed equation we have the expression

mij
∂

∂xi

which is of the same form as mijgi. Thus, this expression represents MT∇, in which case

∇ · (M f) =

(
mij

∂

∂xi

)
fj = (MT∇) · f

56

Exercise 5.7

The proof is

∇× (φf) =
(
∂(φf2)
∂x1

− ∂(φf1)
∂x2

, ∂(φf0)∂x2
− ∂(φf2)

∂x0
, ∂(φf1)∂x0

− ∂(φf0)
∂x1

)
=

(
φ ∂f2∂x1

+ ∂φ
∂x1

f2 − φ ∂f1∂x2
− ∂φ

∂x2
f1, φ

∂f0
∂x2

+ ∂φ
∂x2

f0 − φ ∂f2∂x0
− ∂φ

∂x0
f2, φ

∂f1
∂x0

+ ∂φ
∂x0

f1 − φ ∂f0∂x1
− ∂φ

∂x1
f0

)
= φ

(
∂f2
∂x1
− ∂f1

∂x2
, ∂f0∂x2

− ∂f2
∂x0

, ∂f1∂x0
− ∂f0

∂x1

)
+
(
∂φ
∂x1

f2 − ∂φ
∂x2

f1,
∂φ
∂x2

f0 − ∂φ
∂x0

f2,
∂φ
∂x0

f1 − ∂φ
∂x1

f0

)
= φ∇× f +∇φ× f

57

Exercise 5.9

The proof is

∇× (∇φ) = ∇×
(
∂φ
∂x0

, ∂φ∂x1
, ∂φ∂x2

)
=

(
∂
∂x1

∂φ
∂x2
− ∂

∂x2

∂φ
∂x1

, ∂
∂x2

∂φ
∂x0
− ∂

∂x0

∂φ
∂x2

, ∂
∂x0

∂φ
∂x1
− ∂

∂x1

∂φ
∂x0

)
= (0, 0, 0)

The last equality is true, because the order of partial differentiation is irrelevant for a function whose second
derivatives are continuous.

58

Exercise 5.11

The proof is

∇ · (f× g) = ∂
∂x0

(f1g2 − f2g1) + ∂
∂x1

(f2g0 − f0g2) + ∂
∂x2

(f0g1 − f1g0)

= ∂f1
∂x0

g2 + f1
∂g2
∂x0
− ∂f2

∂x0
g1 − f2 ∂g1∂x0

+ ∂f2
∂x1

g0 + f2
∂g0
∂x1
− ∂f0

∂x1
g2 − f0 ∂g2∂x1

+ ∂f0
∂x2

g1 + f0
∂g1
∂x2
− ∂f1

∂x2
g0 − f1 ∂g0∂x2

=
(
∂f2
∂x1
− ∂f1

∂x2

)
g0 +

(
∂f0
∂x2
− ∂f2

∂x0

)
g1 +

(
∂f1
∂x0
− ∂f0

∂x1

)
g2

−
(
∂g2
∂x1
− ∂g1

∂x2

)
f0 −

(
∂g0
∂x2
− ∂g2

∂x0

)
f1 −

(
∂g1
∂x0
− ∂g0

∂x1

)
f2

= (∇× f) · g− (∇× g) · f

59

Exercise 5.13

The left-hand side of equation (5.21) is

∇(f · g) = (

∂f0
∂x0

g0 + f0
∂g0
∂x0

+ ∂f1
∂x0

g1 + f1
∂g1
∂x0

+ ∂f2
∂x0

g2 + f2
∂g2
∂x0

,

∂f0
∂x1

g0 + f0
∂g0
∂x1

+ ∂f1
∂x1

g1 + f1
∂g1
∂x1

+ ∂f2
∂x1

g2 + f2
∂g2
∂x1

,

∂f0
∂x2

g0 + f0
∂g0
∂x2

+ ∂f1
∂x2

g1 + f1
∂g1
∂x2

+ ∂f2
∂x2

g2 + f2
∂g2
∂x2

)

(8)

The first term of the right-hand side of equation (5.21) is

f× (∇× g) = (

f1

(
∂g1
∂x0
− ∂g0

∂x1

)
− f2

(
∂g0
∂x2
− ∂g2

∂x0

)
,

f2

(
∂g2
∂x1
− ∂g1

∂x2

)
− f0

(
∂g1
∂x0
− ∂g0

∂x1

)
,

f0

(
∂g0
∂x2
− ∂g2

∂x0

)
− f1

(
∂g2
∂x1
− ∂g1

∂x2

)
)

(9)

The second term is

g× (∇× f) = (

g1

(
∂f1
∂x0
− ∂f0

∂x1

)
− g2

(
∂f0
∂x2
− ∂f2

∂x0

)
,

g2

(
∂f2
∂x1
− ∂f1

∂x2

)
− g0

(
∂f1
∂x0
− ∂f0

∂x1

)
,

g0

(
∂f0
∂x2
− ∂f2

∂x0

)
− g1

(
∂f2
∂x1
− ∂f1

∂x2

)
)

(10)

The third term is

(f · ∇)g = (

f0
∂g0
∂x0

+ f1
∂g0
∂x1

+ f2
∂g0
∂x2

,

f0
∂g1
∂x0

+ f1
∂g1
∂x1

+ f2
∂g1
∂x2

,

f0
∂g2
∂x0

+ f1
∂g2
∂x1

+ f2
∂g2
∂x2

)

(11)

The fourth term is

(g · ∇)f = (

g0
∂f0
∂x0

+ g1
∂f0
∂x1

+ g2
∂f0
∂x2

,

g0
∂f1
∂x0

+ g1
∂f1
∂x1

+ g2
∂f1
∂x2

,

g0
∂f2
∂x0

+ g1
∂f2
∂x1

+ g2
∂f2
∂x2

)

(12)

60

Adding equations (9) through (12) leads to quite a few cancellations of terms, the end result being equation
(8).

61

Exercise 5.15

In Exercise 5.8, I defined the permutation tensor eijk. The cross product g × f is represented using tensor
index notation as

g× f = eijkgjfk

where the repeated indices for j and k indicate a summation over those indices. The only free index is i.
We may formally replace g by ∇. For the sake of notation, write ∇ in tensor index notation as ∂i; that is,
the ith component of the tensor is the partial derivative with respect to variable xi. The curl is written in
tensor index notation as

∇× f = eijk∂jfk

Extending this idea to applying the curl twice, we have

∇× (∇× f) = eijk∂jek`m∂`fm = eijkek`m∂j∂`fm = eijkek`mfm,j`

The permutation tensor is a constant with respect to x, so it can be factored outside the partial derivative
operator. The indices j, k, `, and m are repeated, so summations occur for those indices. The only free index
is i, so the resulting expression represents a vector. As mentioned in the book, the notation fm,j` indicates
that indices before the comma are components of the tensor. Indices after the comma denote application of
partial derivatives. Thus, fm,j` is the second-order partial derivative ∂2fm/∂xj∂x`.

Maintaining a list of new index names is a bookkeeping irritation, so let us summarize the results so far
using only i, j, and k, but with subscripts on j and k to obtain new names. We also use the comma notation
to separate components of the tensor from derivatives of the components.

∇× f = eij1k1fk1,j1

∇× (∇× f) = eij2k2ek2j1k1fk1,j1j2

Then

∇× (∇× (∇× f)) = eij3k3∂j3ek3j2k2ek2j1k1fk1,j1j2

= eij3k3ek3j2k2ek2j1k1∂j3fk1,j1j2

= eij3k3ek3j2k2ek2j1k1fk1,j1j2j3

The tensor index notation and subscripting of the newly introduced indices makes it easy to extend the
formula to more applications of the curl:

(∇×)nf = eijnkneknjn−1kn−1
· · · ek2j1k1fk1,j1···jn

If you want to compactify the notation even further, define

c = (∇×)nf

where c is represented by the tensor ckn+1
with free index kn+1; then

ckn+1
=

(
n∏
`=1

ek`+1j`k`

)
fk1,j1···jn

The large pi represents a product of terms, just as a large sigma represents a sum of terms. Oh well, math-
ematical notation tends to be concise and elegant while at the same time appearing to be quite obfuscated!

62

6 Physics Engines

Exercise 6.1. A naive implementation that determines which bins are intersected by a sphere will iterate
over all bins and call the sphere-box TestIntersection function mentioned on page 302. This requires n
intersection tests. If the bins are arranged in a rectangular grid, as illustrated in Figure 6.2, you can speed
things up by projection onto the coordinate axes.

If the sphere has center (xc, yc, zc) and radius r, the interval of projection onto the x-axis is [xc − r, xc + r],
the interval of projection onto the y-axis is [yc − r, yc + r], and the interval of projection onto the z-axis is
[zc − r, zc + r]. Knowing that the bins have constant dimensions, you can determine the subset of bins that
have the potential to intersect the axis-aligned box [xc − r, xc + r] × [yc − r, yc + r] × [zc − r, zc + r]. The
determination involves computing minimum and maximum x-, y-, and z-indices for the bins, something that
requires only a few computations. The subset of bins is typically a lot less than total number, unless the
sphere is really large. In the latter case, your bins are most likely too small a partition of space. The cost
equation is dependent on the ratio of the number of bins in the subset to the total number of bins. With a
good choice of bin size, you should be able to obtain an approximately constant number of intersection tests
(order O(1) instead of order O(n)).

63

Exercise 6.3. This is not a question that requires an answer. There are many ways to implement such an
algorithm.

64

Exercise 6.5. The idea is to construct a delta function that corresponds to the set of points S = {P0,P1}.
This is a matter of choosing an average of two delta functions, each one representing a point in the set. Such
a delta function has a property analogous to equation (6.88),∫

X
G(X)δ(X , S)dX =

G(P0) + G(P1)

2

Equation (6.89) for this delta function is

v+
A = v−A +m−1A

∫
X
∫
t
fNδ(t− t0)δ(X , S) dt dX

= v−A +m−1A
∫
X fNδ(X , S) dX

= v−A +m−1A
fN+fN

2

= v−A +m−1A fN

Equation (6.91) for this delta function is

w+
A = w−A + J−1A

∫
X
∫
t
rA(X , t)× fNδ(t− t0)δ(X , S) dt dX

= w−A + J−1A
∫
X rA(X , t0)× fNδ(X , S) dX

= w−A + J−1A
rA(P0,t0)×fN+rA(P1,t0)×fN

2

= w−A + J−1A

(
rA(P0,t0)+rA(P1,t0)

2

)
× fN

= w−A + J−1A rA(M, t0)× fN

where M = (P0 +P1)/2, the point midway between the two contact points. This is exactly the same result
that we had for the line segment of contact. Therefore, the simplifying assumption of considering only a
finite set of contact points is not an approximation after all! (Well, in the case of constant density mass,
anyway.)

65

7 Linear Algebra

Exercise 7.1. The cost for row reduction using the first row is still ((2µ+α)n)(n−1). The (2µ+α)n portion
is the time spent recomputing a single row’s entries in columns 2 through n+ 1 (recall we are working with
the augmented matrix, which is n× (n+ 1)). There are n− 1 rows to work with. In the forward elimination
of column entries below the current row, the cost for the second row operations is ((2µ+ α)(n− 1))(n− 2).
The n − 2 represents the fact that we clear out entries only below row two. However, the full elimination
must clear out the column entries above row two, so the cost is modified to ((2µ + α)(n − 1))(n − 1). In
general, the full elimination costs are

Fn = (2µ+ α)[n(n− 1) + (n− 1)(n− 1) + · · ·+ (1)(n− 1)] = (2µ+ α)(n− 1)n(n+ 1)/2

The result of full elimination is an augmented matrix for which the first n×n portion is diagonal. The final
phase is to divide each row by the diagonal entry, a total cost of

Bn = δn

The total cost is
C ′n = Fn +Bn = (2µ+ α)(n− 1)n(n+ 1)/2 + δn

The cost for the original algorithm was shown to be

Cn = (2µ+ α)(n− 1)n(n+ 1)/3 + (µ+ α)n(n− 1)/2 + δn

The difference is

C ′n − Cn = (2µ+ α)(n− 1)n(n+ 1)/6− (µ+ α)n(n− 1)/2 = [n(n− 1)/6][(2µ+ α)n− µ]

We already know n > 1, so n(n − 1)/6 > 0. Clearly C ′n ≥ Cn when n ≥ µ/(2µ + α). The right-hand
side is a number that is smaller than 1/2, so for integers we need n ≥ 1. Consequently, C ′n ≥ Cn for all
n ≥ 1. An implementation should use forward elimination, not full elimination, in order to keep the costs to
a minimum.

66

Exercise 7.3. Let A = [arc] and B = [brc] be n× n matrices where r is the row index and c is the column
index. The product AB = [mrc] where

mrc =

n∑
k=1

arkbkc

The transposes are defined by AT = [a′rc], B = [b′rc], and (AB)T = [m′rc] where a′rc = acr, b
′
rc = bcr, and

m′rc = mcr. Therefore

m′rc = mcr

=
∑n
k=1 ackbkr

=
∑n
k=1 a

′
kcb
′
rk

=
∑n
k=1 b

′
rka
′
kc

The condition m′rc =
∑n
k=1 b

′
rka
′
kc says that (AB)T = BTAT.

67

Exercise 7.5. Let u + v + w = 0. Then

0 = u× 0

= u× (u +×v + w)

= u× u + u× v + u×w

= 0 + u× v−w× v

Consequently,
u× v = w× u

A similar construction using a cross product of the equation with v will lead to

u× v = v×w

The geometric interpretation is that the three vectors may be viewed as the three edges of a triangle in a
plane. The fact that the sum is zero means that as you walk around the triangle boundary, starting and
ending at the same vertex, your net distance traveled is zero. The equality of the three cross products says
that it does not matter which two edges of the triangle you use to compute a normal vector, and that normal
vector always has the same length (which is twice the area of the triangle).

68

Exercise 7.7.

Item 1. Since u, v, and w are linearly independent, any vector may be written as a linear combination of
these

p = xu + yv + zw

Then

p · v×w = xu · v×w

p ·w× u = yv ·w× u

p · u× v = zw · u× v

The first equation has solution

x =
p · v×w

u · v×w

The second equation has solution

y =
p ·w× u

v ·w× u
=

u · p×w

u · v×w

The third equation has solution

z =
p · u× v

w · u× v
=

u · v× p

u · v×w

Item 2. Write p as a linear combination of the three pairs of cross products,

p = xu× v + yv×w + zw× u

Then

w · p = xw · u× v

u · p = yu · v×w

v · p = zv ·w · u

The first equation has solution

x =
w · p

w · u× v
=

w · p
u · v×w

The second equation has solution

y =
u · p

u · v×w

The third equation has solution

z =
v · p

v ·w× u
=

v · p
u · v×w

69

Exercise 7.9. The formula for the determinant of a 4× 4 matrix is

det(A) =
∑
σ

= εσaσ(1)1aσ(2)2aσ(3)3aσ(4)4

where (σ(1), σ(2), σ(3), σ(4)) is a permutation of (1, 2, 3, 4). There are 4! = 24 such permutations, so the
determinant has 24 terms, each term having four aij terms and a plus or a minus sign. The table below
shows the 24 terms and signs.

permutation term

(1, 2, 3, 4) +a11a22a33a44

(3, 1, 2, 4) +a31a12a23a44

(2, 3, 1, 4) +a21a32a13a44

(1, 3, 2, 4) −a11a32a23a44
(3, 2, 1, 4) −a31a22a13a44
(2, 1, 3, 4) −a21a12a33a44
(1, 2, 4, 3) −a11a22a43a34
(3, 1, 4, 2) −a31a12a43a24
(2, 3, 4, 1) −a21a32a43a14
(1, 3, 4, 2) +a11a32a43a24

(3, 2, 4, 1) +a31a22a43a14

(2, 1, 4, 3) +a21a12a43a34

permutation term

(1, 4, 2, 3) +a11a42a23a34

(3, 4, 1, 2) +a31a42a13a24

(2, 4, 3, 1) +a21a42a33a14

(1, 4, 3, 2) −a11a42a33a24
(3, 4, 2, 1) −a31a42a23a14
(2, 4, 1, 3) −a21a42a13a34
(4, 1, 2, 3) −a41a12a23a34
(4, 3, 1, 2) −a41a32a13a24
(4, 2, 3, 1) −a41a22a33a14
(4, 1, 3, 2) +a41a12a33a24

(4, 3, 2, 1) +a41a32a23a14

(4, 2, 1, 3) +a41a22a13a34

70

Exercise 7.11. Let U be the upper triangular matrix with diagonal entries uii for 1 ≤ i ≤ n. To compute
the determinant, use a cofactor expansion by the last row. Since the first n− 1 entries of the row are zero,
there is no need to compute the determinant of the corresponding (n− 1)× (n− 1) submatrices. The only
possibly nonzero contribution to the determinant comes from the entry unn times the determinant of the
submatrix consisting of the first n− 1 rows and first n− 1 columns of U . This submatrix, call it U ′ is also
upper triangular. Thus,

det(U) = unn det(U ′)

Notice that regardless of n, the sign term of unn in the cofactor expansion is always a +1. The same approach
works for computing the determinant of U ′, so

det(U) = un,nun−1,n−1 · · ·u1,1

which is the product of the diagonal entries.

71

8 Affine Algebra

Exercise 8.1. In the construction of Example 8.1, the only thing that changes when the two origins are the
same is that (c1, c2) = (0, 0). The final relationship between the coordinates is b1

b2

 =
1√
2

 1 1

−1 1

 a1

a2

 = RT

 a1

a2

where R is the counterclockwise rotation matrix by an angle π/4.

72

Exercise 8.3. The affine subspaces are not parallel. The vector space associated with A1 is the set of
vectors on the x-axis, V1. The vector space associated with A2 is the set of vectors on the y-axis, V2. Neither
V1 ⊆ V2 nor V2 ⊆ V1.

73

Exercise 8.5. The construction is similar to that in Exercise 8.4. Let the known points be Pi = (xi, yi, zi)
for 0 ≤ i ≤ 3. Let P = (x, y, z). This may be written in barycentric coordinates as

P = c0P0 + c1P1 + c2P2 + c3P3

where c0 + c1 + c2 + c3 = 1. Since f is affine,

f(P) = c0f(P0) + c1f(P1) + c2f(P2) + c3f(P3) = c0f0 + c1f1 + c2f2 + c3f3

The value f(P) is known once we compute c0, c1, c2, and c3.

Define Vi = Pi −P0 for 1 ≤ i ≤ 3 and V = P−P0. Subtracting P0 from the first displayed equation and
using c0 − 1 = −c1 − c2 − c3,

V = c1V1 + c2V2 + c3V3

Convert to a linear system,
V1 ·V1 V1 ·V2 V1 ·V3

V2 ·V1 V2 ·V2 V2 ·V3

V3 ·V1 V3 ·V2 V3 ·V3

c1

c2

c3

 =

V1 ·V

V2 ·V

V3 ·V

The 3× 3 coefficient matrix is invertible since the Vi are linearly independent (edges of a tetrahedron with
common end point P0). Solve the matrix with a standard Gaussian elimination.

74

9 Calculus

Exercise 9.1. Let the triangle vertices be Vi for 0 ≤ i ≤ 2. Any point on the triangle is of the form

V(s, t) = V0 + s(V1 −V0) + t(V2 −V0) = V0 + sE1 + tE2

where s ≥ 0, t ≥ 0, and s + t ≤ 1. This is just an application of barycentric coordinates, the coordinates
being 1 − s − t, s, and t relative to the three vertices. The distance from a point P to the triangle is the
minimum distance between P and all points V(s, t) on the triangle. The values of (s, t) are selected so the
squared distance f(s, t) is minimimized. The squared distance is listed below with D = V0 −P,

f(s, t) = |V(s, t)−P|2

= |sE1 + tE2 + D|2

= |E1|2s2 + 2(E1 ·E2)st+ |E2|2t2 + 2(E1 ·D)s+ 2(E2 ·D)t+ |D|2

= a00s
2 + 2a01st+ a11t

2 + 2b0s+ 2b1t+ c

which is exactly the function analyzed in Example 9.8.

75

10 Quaternions

No exercises.

76

11 Differential Equations

No exercises.

77

12 Ordinary Difference Equations

No exercises.

78

13 Numerical Methods

No exercises.

79

14 Linear Complementarity and Mathematical Programming

No exercises.

80

	1 Introducton
	2 Basic Concepts from Physics
	3 Rigid Body Motion
	4 Deformable Bodies
	5 Fluids and Gases
	6 Physics Engines
	7 Linear Algebra
	8 Affine Algebra
	9 Calculus
	10 Quaternions
	11 Differential Equations
	12 Ordinary Difference Equations
	13 Numerical Methods
	14 Linear Complementarity and Mathematical Programming

