
Intersection of Rectangle and Ellipse

David Eberly, Geometric Tools, Redmond WA 98052
https://www.geometrictools.com/

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

Created: September 20, 2015

Contents

1 Introduction 2

2 All-Features Testing 2

3 Closest-Features Testing 4

4 Conversion to Point-Parallelogram Distance Query 5

5 Minkowski Sum of Rectangle and Ellipse 6

1

https://www.geometrictools.com/
http://creativecommons.org/licenses/by/4.0/

1 Introduction

This document describes how to determine whether a rectangle and an ellipse overlap. This is a test-
intersection query (do they overlap) and not a find-intersection query (where do they overlap).

The rectangle is represented by a center C, unit-length and orthogonal axes U0 and U1, and extents e0 > 0
and e1 > 0. The rectangle is considered to be solid with points X = C + ξ0U0 + ξ1U1, where |ξ0| ≤ e0
and |ξ1| ≤ e1. In terms of vector-matrix algebra, X = C + Uξ, where U is the 2× 2 rotation matrix whose
columns are the rectangle axes and ξ is the 2× 1 column vector whose rows are the coordinates ξ0 and ξ1.
Define the four vertices of the rectangle to be

P(i0,i1) = C + (2i0 − 1)e0U0 + (2i1 − 1)e1U1

for i0 and i1 in {0, 1}.

The ellipse is represented by a center K, unit-length and orthogonal axes V0 and V1, and axis half-lengths
a0 > 0 and a1 > 0. The ellipse is considered to be solid with points Y = K + η0V0 + η1V1, where
(η0/a0)2 + (η1/a1)2 = 1. In terms of vector-matrix algebra, Y = K + V η, where V is the 2 × 2 rotation
matrix whose columns are the rectangle axes and η is the 2×1 column vector whose rows are the coordinates
η0 and η1. The ellipse is represented implicitly by

0 = Q(Y) = (Y−K)TM(Y−K)− 1 =
∣∣DV T(Y−K)

∣∣2 − 1

where M = V D2V T with D = Diagonal(1/a0, 1/a1). The solid ellipse (ellipse and region it contains) is
Q(Y) ≤ 0.

The data structures listed next are used in the pseudocode.
s t r u c t Rec tang l e { Po int2 c e n t e r ; Vector2 a x i s [2] ; Rea l e x t e n t [2] ; } ;
s t r u c t E l l i p s e { Po int2 c e n t e r ; Vector2 a x i s [2] ; Rea l h a l f L eng t h [2] ; Matr i x2x2 M; } ;

The matrix M can be computed from the axis[] and halfLength[] members.

2 All-Features Testing

This is a simple approach to test the rectangle features for containment in the ellipse. If any rectangle
vertex is in the ellipse, then the rectangle and ellipse overlap. If no vertex is in the ellipse, it is possible
that a rectangle edge intersects the ellipse. If no vertex is in the ellipse and no edge intersects the ellipse, it
is possible that the ellipse is strictly inside the rectangle, which can be determined by testing whether the
ellipse center is inside the rectangle. The following discussion assumes that the tests are performed in the
order mentioned, which simplifies the intersection and overlap tests.

If P is one of the vertices of the rectangle, containment in the ellipse is characterized by Q(P) ≤ 0.

If P0 and P1 are the endpoints of a rectangle edge, the edge is represented by E(t) = P0 + (P1 −P0)t for
t ∈ [0, 1]. When the endpoints are outside the ellipse, the segment-ellipse test-intersection query is the same
as the line-ellipse intersection. The line and ellipse intersect when the quadratic function

q(t) = Q(E(t))

= (P1 −P0)
T
M (P1 −P0) t2 + 2 (P1 −P0)

T
M (P0 −K) t+ (P0 −K)

T
M (P0 −K)− 1

= q2t
2 + 2q1t+ q0

2

has real-valued roots. The last equality defines the coefficients qi. The quadratic has real-valued roots when
its discriminant is nonnegative: q21 − q0q2 ≥ 0. It is possible to skip the vertex containment tests and use
instead a modification of the edge-ellipse tests. If q(t) has two real-valued roots (possibly equal), say, t0 ≤ t1,
then the edge intersects the solid ellipse when [0, 1]∩ [t0, t1] 6= ∅ (the intersection of t-intervals is nonempty).

If none of the rectangle edges overlap the solid ellipse, the test for the ellipse center contained in the rectangle
requires converting the ellipse center to box coordinates: ξ = UT(K−C). The test for containment is |ξ0| ≤ e0
and |ξ1| ≤ e1.

boo l E l l i p s e C o n t a i n s V e r t e x (E l l i p s e E , Vector2 PmK)
{

r e t u r n Dot (PmK, E .M∗PmK) <= 1 ;
}

boo l E l l i p s eOv e r l a p s E d g e (E l l i p s e E , Vector2 P0mK, Vector3 P1mK)
{

Vector2 D = P1mK − P0mK, MP0mK = E .M∗P0mK;
Rea l q0 = Dot (P0mK, MP0mK) − 1 , q1 = Dot (D, MP0mK) , q2 = Dot (D, E .M∗D) ;
i f (d i s c r >= 0)
{

// The l i n e c o n t a i n i n g P0 and P1 i n t e r s e c t s the e l l i p s e . Determine
// whether the segment conne c t i ng P0 and P1 i n t e r s e c t s the e l l i p s e .
Rea l r o o tD i s c r = s q r t (d i s c r) ;
Rea l t0 = (−q1 − r o o tD i s c r) / q2 , t1 = (−q1 + r o o tD i s c r) / q2 ;
r e t u r n Ove r l ap s ([0 , 1] , [t0 , t1]) ;

}
e l s e
{

r e t u r n f a l s e ;
}

}

boo l Rec t ang l eCon t a i n sPo i n t (Rec tang l e R , Vector2 V)
{

r e t u r n f a b s (Dot (R . a x i s [0] , V)) <= R. e x t e n t [0]
&& fab s (Dot (R . a x i s [1] , V)) <= R. e x t e n t [1] ;

}

boo l T e s t I n t e r s e c t i o n A l l F e a t u r e s (Rec tang l e R , E l l i p s e E)
{

// T r an s l a t e so e l l i p s e c e n t e r i s a t o r i g i n .
Vector2 CmK = R. c e n t e r − E . c e n t e r ;

Vector2 PmK[4] ;
f o r (i n t i 1 = 0 , s1 = −1; i 1 < 2 ; ++i1 , s1 += 2)
{

f o r (i n t i 0 = 0 , s0 = −1; i 0 < 2 ; ++i0 , s0 += 2 , ++j)
{

PmK[j] = CmK + s0∗R. e x t e n t [i 0]∗R. a x i s [i 0] + s1∗R. e x t e n t [i 1]∗R. a x i s [i 1] ;
i f (E l l i p s e C o n t a i n s V e r t e x (E , PmK[j])) { r e t u r n t rue ; }

}
}

i n t 2 edge [4] = { (0 , 1) , (1 , 3) , (3 , 2) , (2 , 0) } ;
f o r (i n t j = 0 ; j < 4 ; ++j)
{

i f (E l l i p s eOv e r l a p s Ed g e (E , PmK[edge [j] [0]] , PmK[edge [j] [1]]) { r e t u r n t rue ; }
}

r e t u r n Rec t ang l eCon t a i n sPo i n t (R , −CmK) ;
}

3

3 Closest-Features Testing

In worst case, the all-features approach requires 4 vertex containment tests, 4 edge overlap tests, and 1
point-in-rectangle test. This does not take into account closest-feature information, but a small modification
does. First, test whether the ellipse center is in the rectangle. If it is, the objects intersect. If it is not, then
you will know the 1 or 2 edges of the rectangle that are visible to the ellipse center. In worst case, this limits
you to 1 point-in-rectangle test, 3 vertex containment tests, and 2 edge overlap tests.

boo l TestOver lap1Edge (Rec tang l e R , E l l i p s e E , Vector2 CmK, i n t v e r t e x [])
{

Vector2 V [2] ;
f o r (i n t j = 0 ; j < 2 ; ++j)
{

i n t s0 = 2∗(v e r t e x [j] & 1) − 1 , s1 = 2∗(v e r t e x [j] & 2) − 1 ;
V[j] = CmK + s0∗R. e x t e n t [0]∗R. a x i s [0] + s1∗R. e x t e n t [1]∗R. a x i s [1] ;
i f (E l l i p s e C o n t a i n s V e r t e x (E , V[j])) { r e t u r n t rue ; }

}
r e t u r n E l l i p s eOv e r l a p s E d g e (E , V [0] , V [1]) ;

}

boo l TestOver lap2Edges (Rec tang l e R , E l l i p s e E , Vector2 CmK, i n t v e r t e x [])
{

Vector2 V [3] ;
f o r (i n t j = 0 ; j < 3 ; ++j)
{

i n t s0 = 2∗(v e r t e x [j] & 1) − 1 , s1 = 2∗(v e r t e x [j] & 2) − 1 ;
V[j] = CmK + s0∗R. e x t e n t [0]∗R. a x i s [0] + s1∗R. e x t e n t [1]∗R. a x i s [1] ;
i f (E l l i p s e C o n t a i n s V e r t e x (E , V[j])) { r e t u r n t rue ; }

}
f o r (i n t j 0 = 2 , j 1 = 0 ; j 1 < 3 ; j 0 = j 1++)
{

i f (E l l i p s eOv e r l a p s Ed g e (E , V[j 0] , V [j 1])) { r e t u r n t rue ; }
}
r e t u r n f a l s e ;

}

boo l Con ta i n sPo i n t (Rectang le , E l l i p s e , Vector2 , i n t [])
{

r e t u r n t rue ;
}

Tes tOve r l apFunc t i on Tes tOve r l ap [3] = { Conta in sPo in t , TestOver lap1Edge , Tes tOver lap2Edges } ;
s t r u c t Query { i n t f u n c t i o n ; i n t v e r t e x [3] ; } ;
Query query [3] [3] =
{

{
{2 , {2 ,0 ,1}} , // −e0 < x0 and −e1 < x1
{1 , {2 ,0 }} , // −e0 < x0 and x1 <= e1
{2 , {3 ,2 ,0}} // −e0 < x0 and e1 < x1

} ,
{

{1 , {0 ,1 }} , // x0 <= e0 and −e1 < x1
{0 , { }} , // x0 <= e0 and x1 <= e1
{1 , {3 ,2 }} // x0 <= e0 and e1 < x1

} ,
{

{2 , {0 ,1 ,3}} , // e0 < x0 and −e1 < x1
{1 , {1 ,3 }} , // e0 < x0 and x1 <= e1
{2 , {1 ,3 ,2}} // e0 < x0 and e1 < x1

}
} ;

boo l Te s t I n t e r s e c t i o n C l o s e s t F e a t u r e s (Rec tang l e R , E l l i p s e E)
{

// Transform the e l l i p s e c e n t e r to r e c t a n g l e c o o r d i n a t e system .
Vector2 KmC = E . c e n t e r − R. c e n t e r ;
Rea l x i [2] = { Dot (R . a x i s [0] , KmC) , Dot (R . a x i s [1] , KmC) } ;

4

i n t s e l e c t [2] =
{

(−R. e x t e n t [0] < x i [0] ? 0 (x i [0] <= R. e x t e n t [0] ? 1 : 2)) ,
(−R. e x t e n t [1] < x i [1] ? 0 (x i [1] <= R. e x t e n t [1] ? 1 : 2))

} ;

Query q = query [s e l e c t [0]] [s e l e c t [1]] ;
r e t u r n TestOve r l ap [q . f u n c t i o n] (R , E , −KmC, q . v e r t e x) ;

}

4 Conversion to Point-Parallelogram Distance Query

The objects can be transformed so that the ellipse becomes a circle and the rectangle becomes a parallelogram.
The rectangle and ellipse overlap if and only if the parallelogram and circle overlap. The latter query reduces
to comparing the distance from circle center to parallelogram with the circle radius.

To compute the distance efficiently, we need to determine the 1 or 2 edges of the parallelogram that are
closest to the circle center. The analysis is similar to that in the pseudocode TestIntersectionSomeFeatures. In
fact, the only difference between the two algorithms is that the current one involves distance, which uses the
standard Cartesian metric. The previous algorithm is essentially the same algorithm but with the Euclidean
metric imposed by the ellipse. It turns out that we may develop this algorithm without converting the ellipse
to a circle.

As in the previous section, we may determine which of 9 cases apply to the ellipse center relative to the
rectangle. In a case where the ellipse center is outside the rectangle, we want to find the closest edge point
relative to the metric of the ellipse. But what does this mean? The function Q(Y) defines a family of
ellipses, each ellipse corresponding to a scalar c for which Q(Y) = c. Generally, implicit curves of this type
are referred to as level curves of the function. The original ellipse has level value c = 0. The ellipses nested
inside the original have level values c < 0, where the ellipse center is a degenerate curve (a single point) when
c = −1. Ellipses outside the original have level values c > 0. We want to find the point P on the visible
rectangle edges that minimize Q, call this value cmin. The point P is considered to be the point closest to
the original ellipse relative to the imposed metric, which is matrix M . If cmin ≤ 0, the rectangle and ellipse
must overlap and P is in the overlap set. In the Cartesian case, the quadratic has the matrix M = I (the
identity). Minimizing distance is equivalent to minimizing the quadratic when M = I.

For an edge parameterized by P0 + t(P1 − P0) with t ∈ [0, 1], the quadratic is as defined previously:
q(t) = q2t

2 + 2q1t+ q0. The minimum occurs either at an endpoint of the t-interval or at an interior point t̄
of the interval where the derivative is zero, q′(t̄) = 0. For the case when a single edge is the only candidate
for closest feature, we need compare at most 3 values: q(0) ≤ 0, q(1) ≤ 0, and q(t̄) ≤ 0, the latter one only
when t̄ ∈ (0, 1). For the case when two edges are candidates for closest feature, we need compare at most 5
values, 3 per edge but one of them shared.

The derivative of q(t) is q′(t) = 2q2t + 2q1. Because M is positive definite, q2 > 0. The derivative is zero
at t̄ = −q1/q2. In order that t̄ ∈ (0, 1), we need 0 < −q1 < q2. When this is true, q(t̄) = (q0q2 − q21)/q2.
The test q(t̄) ≤ 0 is equivalent to the test q21 − q0q2 ≥ 0, which is exactly the test used in the edge cases for
TestOverlap2 and TestOverlap3. As it turns out, viewing the problem as point-parallelpiped distance does not
gain us anything, because it is equivalent to the optimized TestIntersectionSomeFeatures.

5

5 Minkowski Sum of Rectangle and Ellipse

A different approach involves shrinking the ellipse to a point and growing the rectangle to a larger one with
elliptically rounded corners. The latter object is the Minkowski sum of rectangle and ellipse. The rectangle
and ellipse overlap when the ellipse center is in the Minkowski sum.

Translate the rectangle center to the origin. This is equivalent to processing the rectangle R with center 0
and the ellipse with center K − C. I will continue to refer to the ellipse center as K. In this setting, the
Minkowski sum has a bounding rectangle R′ that is centered at the origin and has the same axes as the
original rectangle. The extents are larger, of course. Figure 1 illustrates this.

Figure 1. The gray-shaded region is the Minkowski sum of the rectangle and ellipse. The ellipses
at the original vertices are shown. The bounding box of the sum is also shown (in green). The
yellow-shaded regions are the focus of the analysis here.

We need to compute the points on the corner ellipses that support R′. Let P be a corner of R. The extreme
points in a specified unit-length direction N on the ellipse defined by Q(X) = (X−K)TM(X−K)− 1 = 0
are points on the ellipse with normals parallel to N (two of them). Normal vectors to the ellipse are provided
by the gradient, ∇Q = 2M(X−K). The gradient is parallel to the specified direction when M(X−K) = sN
for some scalar s. Thus, X−K = sM−1N. Substituting this into the quadratic equation, we can solve for

s = 1/
√

NTM−1N. The two extreme points are X = K ±M−1N/
√

NTM−1N. The distance from K to

the extreme points measured along the line of direction N is ` =
√

NTM−1N.

In our application, the directions of interest are U0 and U1. The increases in the extents of the original

rectangle are `i =
√

UT
i M

−1Ui for i = 0, 1; that is, the extents of R′ are ei + `i for i = 0, 1.

If K is outside R′, the rectangle and ellipse do not overlap. If K is inside R′, we need to determine whether
K is outside the ellipses at the corners of R. If so, the rectangle and ellipse do not overlap. Sign testing will
allows us to test exactly one corner for K.

6

Figure 1 shows two extreme points at the upper-right corner of R. The corner is labeled P and the exteme
points are labeled A0 and A1. Knowing that K is inside R′, the region outside the ellipse at that corner
is characterized as follows. Define ∆ = K − P. Compute the representation of ∆ in terms of the vectors
formed by the extreme points and the ellipse center, ∆ = z0(A0 −P) + z1(A1 −P). If z0 > 0 and z1 > 0,
then K is in the quadrilateral formed by P, A0, A1, and the corner P′ of R′. To be outside the ellipse, we
additionally need ∆TM∆ > 1. The extreme points are Ai = P +M−1Ui/`i. This leads to

M(K−P) = z0M(A0 −P) + z1M(A1 −P) = (z0/`0)U0 + (z1/`1)U1

which implies z0 = `0U
T
0M∆ and z1 = `1U

T
1M∆. Pseudocode for the algorithm is listed next. In practice,

the Ellipse data structure stores an orientation matrix V rather than M . The computation of `i becomes

`2i = UT
i M

−1Ui = UT
i V D

−2V TUi = (a0Ui ·V0)
2

+ (a1Ui ·V1)
2

so you do not need to apply a general inversion algorithm to M .

boo l Te s t I n t e r s e c t i o nM i n k ow s k i (Rec tang l e R , E l l i p s e E)
{

// Compute the i n c r e a s e i n e x t e n t s f o r R ’ .
Rea l L [2] ;
f o r (i n t i = 0 ; i < 2 ; ++i)
{

L [i] = s q r t (Dot (R . a x i s [i] , I n v e r s e (E .M)∗R. a x i s [i])) ;
}

// Transform the e l l i p s e c e n t e r to r e c t a n g l e c o o r d i n a t e system .
Vector2 KmC = E . c e n t e r − R. c e n t e r ;
Rea l x i [2] = { Dot (R . a x i s [0] , KmC) , Dot (R . a x i s [1] , KmC) } ;

i f (f a b s (x i [0]) <= R. e x t e n t [0] + L [0] && fab s (x i [1]) <= R. e x t e n t [1] + L [1])
{

Rea l s [2] = { (x i [0] >= 0 ? 1 : −1) , (x i [1] >= 0 ? 1 : −1) } ;
Vector2 PmC = s [0]∗R. e x t e n t [0]∗R. a x i s [0] + s [1]∗R. e x t e n t [0]∗R. a x i s [1] ;
Vector2 MDelta = E .M∗(KmC − PmC) ;
f o r (i n t i = 0 ; i < 2 ; ++i)
{

i f (s [i]∗Dot (R . a x i s [i] , MDelta) <= 0)
{

r e t u r n t rue ;
}

}
r e t u r n Dot (de l t a , E .M∗ d e l t a) <= 1 ;

}
r e t u r n f a l s e ;

}

7

	1 Introduction
	2 All-Features Testing
	3 Closest-Features Testing
	4 Conversion to Point-Parallelogram Distance Query
	5 Minkowski Sum of Rectangle and Ellipse

